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HYPERGEOMETRIC FUNCTIONS AND VARIOUS RELATED PROBLEMS

S. Pincherle
DI

The author presents a series of lessons dealing with the */209
theory of hypergeometric functions based on the principles
of analytic functior theory. Then dealt with successively
are the principal properties of hypergeometric series, linear
difference equation and second order linear difference equa-
tion, linear differential equations and regular linear dif-
ferential equations and their application tec the hypergeometric
equation.

Chapter VI contains the theory of a quite simple func-
ticnal transformation, and, as an application of this oper-
ation, two distinct generalizations of hypergeometric func-
tions by Pochhammer and Goursat. In Chapter VII, by applying
some general propositions in linear differential equations,
particuiarly of the second order, the following results,
among others, are given: 1. a method of calculating the value
of a coatinuous frac.ion the terms of which are rational func-
tions of the index and, as a special case, the well-known
Gauss formula for the expansion of the quotient of two conti-
guous hypergeometric series in a continuous fraction; 2. the
development of an analytic function in ordinate series accord-
ing to the denominators or the remainders of the reductions
of a continuous algebraic fractiom, especially in accordance
with a system of hypergeometric functionms, e.g., spherical
functions, with a method for determining the convergence terms.

(e
/.
The hypergeometric series, studied by Gauss as a synthesis “of elementary

trascendentals, has in turn been taken as a point of departure in the research
and formation of innumerable classes of new functions. The important part play-
ed by the Gauss series in the development of modern analytical methods is evi-
dent if one takes into consideration the fact that two of the most outstanding
theories which have enriched science in the last thirty years have resulted

from studies on this series: that of linear differential equations established

by Fuchs in a now classic memorandum, the elementary origins of which, however,

*/Numbers in the margin indicate pagination of the originai foreign text.
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are found in the celebrated work by Riemann on the hypergeometric series, and
that of automorphic functions, which owes ite results to Poincaré and Klein,
the method of which, however, appears to be contained in essence in the studies
by Schwarz on cases in which the hypergeometric differeantial equavion admits of
an algebraic integral. Because of their historical interest and the number of

generalizations which, even in recent times, the various mathematicians have

giver them in different directions, and due to the various useful digressions

@

L3 which it offers, I was of the opinion that the theory of hypergeometric func-
,:' tions wou.:.d be an admirable subject for a series of lessons for students ade-

%

1 quately grounded in the principles of analytical function theory.

&

}%. Therefore, I have presented a series of lessons on this subject in the R.
§' University of Bologna during the current school year. In gathering material

% for this course I.have noticed that various theories, preseuted as separatce
_%> o generalizations of the hypergeometric functions, can instead arise from a sin- -

gle source and that some treatments, with no apparent comnection with each

% other, presented at different times and wit™ differeat methods, could be re-

é grouped under a single point of view, which is doubly advantageous in that /210
% greater simplicity and brevity of exposition and uniformity of method are

'£: achieved. This observation has led me to believe that the publication of por-
-y

tions of this course would serve a useful purpose; I was moved to this end also
by the consideration that this publication would give me the opportunity to

_ present the applications of some results obtained by me in previous works in a
2 simplified form. Chapter VI of this memorandum therefore contains the theory

. : of a quite simple operation or transformation which I previously encountered;

in the same chapter, as an application of this operation, are presented in a

L

very obvious manner two distinct generalizations of the hypergeometric functions
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which, originating from quite different views, lave been given by Pochhammer
and Goursat. Also, in Chapter VII, by applving some general propositions on
linear differential equations, particularly of the second order, the following
results, among others, are given: 1. a method of calculating the value of a
continuous fraction the terms of which are rational functions of the index and,
as a special case, the well-known Gauss formula for the expansion of the quo-
tient of two contiguous hypergeometric series in a continuous fraction; 2. the
development of an amalytic function in ordinate series according to the denomi-
nators or the remainders of the reductions of a continuous algebraic fraction,
especially in accordance with a system of hypergeometric funclioms, e.g.,
spherical functions, with a method for determining the couvergence conditions
(completely different from that followed by Thomé in his memorandum of Vol. 66
of the Journal of Crelle) to which I should like to call the attention of the

reader because I believe that it can be found in a more simple and much more
general manner.

In view of the fact that the journal in which I have proposed vo publish
these few pages is directed to the young students in the Italian universities
by its illustrious and lamented founder and that the subject involved is of
particular interest to them, I felt that it was my duty to present the material
in the most accessible form and to hold the necessary acquirements to a minimum.
Therefore, I feel it necessary to touch on some well-known facts: these are
found in the first chapter, in which the most obvious properties of the Gauss -
series are simply summarized, in the third chapter, which contains the elements
of the theory of linear differential equations, and partly in the second chap-
ter, in which the theory of recurring (or periodic) linear (or difference)

equations particularly of the second order is dev:loped with a certain degree
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of amplitude. The usefulness of the latter theory is evident on each page of
the following chapters. It may seem superfluous to present a theory as well
known as that of linear differential equations. I decided to do so for a num-
ber of reasons: {first, the continuous references made to it in the subsequent
work; second, the fact that this theory is less familiar to our students than
it should be due to the fact that we do not possess a textbook which presents
it clearly and simplv and that it is difficult for many students to read the
originil memorandums; finally, because the opportunity of adapting a most
genial method of the lamented Prof. Casorati to school use presents itself
here, a method which consists of adding to the exposition of the theory of /211
linear differential equations, the concepts on linear difference equations and
which offers unparalleled simplicity and scientific as well as didactic in-
terest.

It would be fortunate if my endeavor would induce others with greater
ability to compile a complete work on the generalization of the hypergeometric
functions which would contain the following data conveniently fused together in
the common point of view of the theory of substitution groups: the results ob-
tained by Schwarz* in seeking algebraic solutions for the hypergeometric dif-
ferential equation, by Heun** by increasing the number of its singular points,
by Papperitz***, who made a contribution to the study of the uniform, automorp-

hic functions, which originate from the equation itself, by Klein*#*** 6 who so

*Crelle, Vol. 65, p. 292.
**Math, Annalen, Vol. 33, p. 161.
**%*Math. Aanalen, Vol. 34, p. 247,

*%x*Math. Annalen, Vol. 37, p. 573.



splendidiy discovered the roots of the hypergeometric series, and by many
others*, not to mention the extension of the hypergeometric functions to the
case of many variables, already successfully attempted by Picard**, by Appelli#*#*
ard by Horn#**%%, and which by itself would offer sufficient material for a

separate monograph.

CHAPTER I
SUMMARY OF THE PRINCIPAL PROPERTIES OF THE HYPERGEOMETRIC SERIES

1. From the term of progression or geometric series given to the expan-

sion:
2 n
1+ x4+ x4 000 x4+ ...,

comes the term hypergeometric series given by Evler to the series:

o a{z41,-25+1) i Ve (a4 n=10 50 - 1) 34 n-1)
14 ~ S Nl S T TN LN TS L Tt 1
o R T T P I Yy rl)y=n=1)-1.2 3.0 ’ e

Gauss, in a now classic workV, has made a thorough study of this series in- /212_
sofar as was possible with the analytical knowledge of his time; he designated
the series (1) with the symbol

F(a’ B, Y’ x)

*As the present memorandum was in the final stages of composition, I
learned that the most distinguished Prof. Klein has presented a course on hy-
pergeometric functions, now published in lithogriphic form, during the past
winter semester. As yet, I have not been able to secure information on that
course, but surely the "desideratum" hare formulated will be well rewarded.

*%Annales de 1'Ecole Normale Supérieure, 1881
*%%J, Math., S, III, Vol. 8, p. 173.
#%%k*Acta Mathematica, Vol. 15, p. 113.

VWerke, Vol. III, p. 123.
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calling a, B, and y parameters and x the argument: notations and denominztions
which have been retained by his successors.

The series (1) contains as special caces many of the series which are pre-
sented in the elements of calculus. We shall point out the following:

F(—-m,g,@,«x)_—.}_‘(:?)a;n:(l+m)M, (a)
=\

i.e., the binominal series;

F(h, 1,9, —m)= Y o =" 1, (b)
%J( )1z+4—g‘10°(l+w)’

I
L

AV

Ear, Y

from which, the logarithmic series; ctc.

We should also note, more for its historical interest than for its

scientific significance, that

CILERAT L

yields at the limit for p = =, the function e¥, as shown by a very obvious
reasoning which is performed Ly dividing the summation into two parts, the first
of which contains a number of terms independent of p. In a similar way it is

also found that

is reduced when p = », p' = », to the series expansion of cos x. However, we
shall not cousider infinite values of the parameters in the following.
2. If a rutio is established in the series (1) between a term and the

preceding one, it is immediately evident that the limit of this ratio for /213
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n =« ig x: therefore, it can be concluded that the series is absolutely con-
vergent for le < 1, and divergent for lx! > 1. In the plane of the complex
variable x the series (1) then has a circle of convergence with the center at
x = 0 and with the radius equal to unity: this series then has a regular
~nalytical funccion at every point within this circle and thus possesses all
the properties, from the principles of the theory to those of the analytical
functions, which can be expected with th2se functions in the intervals in which
they remain regular.

For le = 1, the critericn used permite of doubt with respect to the con-
vergence or divergerce of the series. It is ther:fore readily demonstrable

1

that the series converges absolutely also for {xf = 1 when the real part of

a1+ B - v is negative. Indeed, by putting

a=a +ia" , E=F+V , y=y 4+

we obtain easily that

Tyt m)(n+1)

a-L1)(3+n N UV |
(221§ )lz L+ ST Y0 4 superior powers of %u

Keeping in mind that the series of positive cerms Xan is convergent if

. a
hn}n(1~ iy I I

—_ P
n=» J“_,

it can be concluded that when o' + 8' - y' is negative, the series

A S C R IR

t+ =] T
7! R IR

is convergent absolutely for |x| = 1.
The hypergeometric series is .educed to a polyncemial if, and rnly if, one

of the a, B numbers is a negative integer.
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3. If o is a complex number, p a positive number, and Ial < p, we have

jale+ ... z+n—Ni<sto+ Hoo o +n-1),

therefore, for the x values located on the circumference of center x = 0 and of

radius & < 1 and for o values within a circle of center a = 0 and of radius p,

we have

IF(a,[a’,‘;,m)[g]F(p,{5,7,&)].
If M is now the upper limit of the second member values, for a known theorem /214

on the power series, we have

g+ .o+ =-02% s 002 -

]
e VO T PR 2% DU "S N
and this is sufficient reason to state that, for the given values of o« rpi £' <

£, the series F(o, B, v, £') is equaily convergent. A fundamental thac. ». of

Weierstrass on the series of rational --ions* now permits us to con.li.

that the sa:d series 1s a uniform anmalytizal function of o, regular for

il
finite « values, i.e., that this series i a integral trascendental r .. jon of
a. The same is true in cases of F considered 4s 2 functioa of

Now let us consider F as a function of y. If y = y' + iy’ v s5till true
and we assume that y' + m > 0, m veing a positive integral nuw'z-, we shall
have

IY+m|>y+m,
therefore

' | '

GED GG S G D )

3

*Monatsberichte der Akad. der Wissensch. zu Berlin, August, 1880,

8
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Thus the series F can be written

T N o P R T | F R L B R
vl Yo+ ) tyim=1)1-2.5.m ‘ “
where, given |x| = £ and y'' being a positive number less than y' + m, F, is
such that:
|| <14 (F4m)F~m)E | ha gz dm - )03 -, 5+ m+ 1) E
1 Y 777 S S A AP T T T
Y (m+1) ’ AL (e Lo B

If M is the value of this convergent series, we have [Fll < M, and therefore
for all y values so that y' + m > O, Fl is equally convergent and represents
therefore an analytical, univocal and regular function of y. The part that
precedes the term in F; is a rational function of vy, with poles of the first
order in the points y =0, -1, -2, ... -m + 1. Whence, ¥, considered as a

function of y, is a fractional trascendental function having a pole of the

first order in each point O, -1, -2, ... -m, ..., oud, consequently, one singu-
lar point essential to infinity.

From what is demonstrated in this paragraph, accordirg to the well kn.wn/215
principles of the thecry of amalytical fuactions it follows that the series F
can be ditierentiated ' :rm by term with respect to the parameters a, B, . .d Y.

4. It is easy to find the various functiomal properties possessed by the
series F due to the sperial form of its coefficients.

(a) By deriving (1) with respect to x, and by denoting the derivation with

respect to this variable by means of accents, we have

F'=5‘$F(a+a,ﬁ+4,y+l,x). (2)

(b) we have also
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in which the terms enclosed by parentheses are
Fa+l,2. vy, m-Fz,3,7v, 2.

By pointing out the only parameter with which the value can be wodified,

F is expressed by means of the difference F(a + 1)-F(u), and in the same manner

for the other parameters with the expressions:

:z:F'::a(F(a+'!)— (a)),
zF = (F(,s +1) —F(,s)) , 3)

xF = —.%(F(r-l:i)—l’(*:)).

By indicating the finite difference F(a + 1)-F(a) with AF and the nth

difference with AR F

Fa+n)~nFa+n- 1)+(;)F(a+ n—-2)-o.. .+ (-1 Fa),

from the first equation in (3), by deriving again with respect to x snd multi-

plying by x we obtain:
@ = q(a + 1) AF
and in geaeral
Z'FM=g(a 1)y, 0. (@4 n-1)AF (“)

a formula which is easily deronstrated by showing that, supposedly true for the
superscript n, it is also valid for the subscript n + 1.

(c) Given the linear differential equation of the second order

10
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if an attempt is made to integrate it in a series by tnhe method of indetermi-

nate ccefficients, placing g/x) = ZKnx“, we readily find that

ko (tay(n+2

L e

and, therefore, with the arbitrary coefficient k being equal to unity, the

series ¢(x) coincides with F(a, £, Y, x}. Substituting ia this identity
@--2)F . ((2+34 hax-9F - 25F=0

the values given by (4) for xF' and sz", the following equation is obtained

with a simple reduction

(x5 DNx—DYF+ (2425 x—yAF - 20F = 0; (6)

so that the hypergeometric series satisfies a differential linear equation of
the second order with respect to the argument and a linear eguation by the dif-
ferences with respect to each of the parameters.

(d) Eq. {6) can be given another form by substituting its value F(a + 1)-
F(a) for the difference AF and so on for the second difference. Thus, the

linear equation is obtained

(@a+DNe—-NFa+2)—~((@a—+He-2@+ ) +PFa+ )~(z—-y+ 1) Fe)=0,

and substituting a + u for a, and replacing F(a + n) with F, for brevity, the

linear equation, which can be said to be recurring of the second order is b-

tained.

(ztn+ 1)y -NF, n-((2—34 04 De=Az+n+ D +PF -2 +n~-y+ D, =0. €]

11
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By mezns of this relation one can successively express Fp, Fq, ... by

mears of F and F; by using an equation of the form /217

I"“ = pu F + Qn Fi 14

P, and Q, being rational functicas of x and of &. Analogous relations are valid

for the other parameters, B and y. We shall state the express case for equa-
tion (7) by saying that the F, values are a recurring system of functions which

is linear and of tha second order.

(e) Gauss has called contiguous (functiones contiguae) two functions F in

which two of the parameters have the same value and the values of the third

parameter differ by one unit. Given F(a, 8, Yy, x), the system then has 6 con-

tiguous functions and two of these and the primitive F can be associated in 15

differenc ways. Among these 15 terms there exist some homogeneous linear rela-

tions having coefficients of the first degree in x, three out of them arise
from parazraph (d) of the present section and the others are readily obtained
by the formula (3).

5. It is known that, according to Legendre, the definite integral is

called a Eulerian integral of the first species and is dcnoted by B(p, q)

]‘uﬂ”‘(l - )T du
Vv

where p and q are either positive numbers or complex numbers whose real part is

positive; it is also known that if we have the recurring relatiou with respf.ct

to p:

B(p+1)=—2—B(p),
(P+ 1= B)

then

12



. - ap+1).. Ap+n-1) \
B(]J'F‘R,(l}— (p+ q‘([wrl]—-l (1 ——q-;--ll——‘l—r (l)”l’

From this can be deduced

2 l) . ..:.n-.l)
tin-2r Y=E-1. T, v I -
[u d—-w o "’("11)- ("—Lh-—l)llol

where the real parts of 3 and y-3 are assumed to be positive.

Under such circumstances, lec us consider the following binomial series:

\1 ex+1). .. (g+n-1

A —vx) == 2, )

B0,
wat;

this development is convergent at the same degree if u is real and its value /218
lies between 0 and 1, including the extremes, while ,‘x! < 1. Then it is possi-
ble to multiply by uB=3i(1-u)Y"8-1gy and integrate between 0 and 1. Thus, by

retaining the relation just established, we obtain:
1 . "
[uw‘ Ylouary 3y

R % i(ZTl) A2 n=1)50 ‘1*.(.—11—-1) . e
=2 YEFDLE ST e s / =0T

A=y

therefore

. . 1 1,
Fla,s5,v,0= el T --)/ WY — ux) T - )Y du,
P ot 0

i.e., by separating the external factcr, the nypergecmetric series can be put
in the form of a definite integral containirg the variable x under the sign.
Having reviewed the main properties of the classic hypergeometric _series,
the. individual theories focuned on each of these properties will be studied in
subsequent chapters and we shall begin with the theory of recur—ing linear equa- - ’

tions to which equations (6) aud {7) refer.

13 -



CHAPTER II
LINEAR DIFFERENCE EQUATIONS

6. In this Chapter we shall consider recurring linear equations, i.e.,

relations in which the values of a function f(n) of n appear linearly, for dif-
) : ferent values n + 1, n + 2, ... of the variable. The relation will be said to
be of the order of r if f(n), f(n + 1), ... f(n + r) enter into it.

This relation would then take the following form

fm+ry+ag, f(a+r—1)+a,, fR+r—+.. +a,,[(n)=b,, @)

and it will be called homogeneous or not depending on whether the b, value in

it is respectively zero or different from zero.

If A is the known symbol of the finite difference
f=ftm+1)~7(n),

by the known formula* /219

I(h—1)

3 Moo+, (=1,2, ..7)

f1hy=fn)+hdf(n)+

equation (1) can be transformed into
ATf+aly ATy, 871 L, f=0,,

for tWis reason equation (1) is also adaptable for a linear difference equation

of the order of r.

¥
*
£
s
%
£
4
35
g%
¥
v
o
%
3
k3
&
af

5 part, by constant is understood any quantity which does not change when n varies

? by integere: in particular, any periodic function of n with a period equél to
Jé unity.

q

! *V. p. e. Cesaro, Analisi algebrica (Algebraic analyses), p. 461.

;

In the nresent theory, and as long as no other variable besides n plays a

14
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7. Theorem. "A necessary and sufficient condition so that, among the r

. { > . . . .
functions of n Tl.fz...fr, an identical, homogeneous, linear, relation with

constant coefficients can exist, is that the following determinant be zero*'.

fiu fin; . R
hinel)  fansl) L f(n)

- - - . - . . .

i
I
|
{
I
|
!
!
|
i

fintr=Y) La=sr=1) . . fin+r=1)

(a) The condition is necessary. 1f indeed, ¢y, cg,...c, are constant, we

have

ey fy(m) +eafyin)+ ... ke fi{m)=0,

by writing those relations which are deduced by changing n inton + 1, n + 2,...

n+ r - 1 together with this relation, we obtain homogeneous linear equations

between €1y €ye0eCpy which require that D = 0 in order to coexist. T

(b) The condition is sufficient. This is true for two functions. In /220

Aty

fact, if

ALY fx(n)

fm+ 1) fin+1)

then
RN
R ¥ 0

i.e., fz(n):fl(n) is a constant in the established sense; if it is placed equal

to cjicy, we have

*Casorati, Interpreted Calculation of the Finite Differences, etc., Sec.
7. Annali di Matematica, S. IL, Vol. 1C.

15 T



e, fi(n) + ¢, foln) = 0.
Let us assume now that the proposition is true for r-1 functions. T claim that
it is also true for r. Indeed, a very simple identical transformation allows

the putting of the determinant D into the form:

D,
De=c o Vo
fi+1) o fynsr--2

where Dl is the determinant
Lmfi(n+1) — fLimf(n=1) oY) = f()fn 1) ‘

f(e+Dfi(n+21 = fi(n+1)fo(n+2) D 2) = fi(nED (e 2)

|
f4r-2)fi(n =Dy (nr=-2)f(n47-1) . oL f,(n4r=-2)fy(n+r=1)=fy(n4T=-2)f (n+7=1).

Now here fl(n) is assumed to be not infinite: therefore D; should be identi-

cally zero. However, it is a determinant of the same form as D, relative to

the r-1 functions
) fi(a+1) = fin) fyn+1) , .. f(n) (04 1) - f,(m) f.(n+1),
and therefore an identical, homogeneous linear relation will exist among these:

¢, (/‘,(n)f,(n+1)-f,(n)f2(n+i)) F oot oy (MAMED =AM (n+1)) = 0
whererore /221

[ fn) ) e i) .
| f4+1) A+ ki) |

but this being a determinant D relative to the functions
L) , e/) f(n) + ... + ¢y F (1),

it follows that an ideatical homogeneous linear relatior with constant coeffi-

16
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cients, will exist among these and namely, among the fl(n), fz(n),... fr(n),
8. Given an equation of the form (1), each one of its solutions is said
to be its integral. Considering from now on the homogeneous equation of order

r:

fnentag, fo+r -+ .. . +a,.,f(n=0,
’ ' (2)

in which we shall concede that, at ieast from an n value on, ar.n is not zero,

it is evident that if ¢(n) is one of its integrals, C ¢(n) is also, C being a
constant. If ¢3(n), ¢p(n) are two integrals of (2), Cl¢3(n) + Cooo(n) will
also bc an integral, cj, cj, also being constants.

Thecrem. "Every equation of the form (2) has r linearly independent in-
tegrals, i.e., among which nc homogeneous linear reiation with constant coef-
ficients exists; every other integral of the same equation is associated with

the preceding r values by a homogeneous linear relation with constant coeffic-
ients".

Let z be a special value of n*: if arbitrary values are given to f(z),
f(z + 1),... ¥{z + r - 1), Equation (2) allows us to obtain f(z + 1), f(z +r +
1),..., and with that we shall have an integral of (2). Similar r integrals
can be determined among which no homogeneous linear relation with constant ~o-

efficients will exist if the arbitrary values
fz) fi(=) .o fi(2)

fiG+1) LG+ .. fi=+ ]

. . . . . . . . . . .

flz+r=-Dfz+r=. .. fi(z+r-1)

*Tn our theory here the z value cen be assumed wiiviout restriction to be
an integer and also to be null.

17 o
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are chosen in such a way that their determinant is non-zero (Sec. 7). Once /222

determined, the line. rly independent r integrals fl(n), fz(n),... ﬁr(n),

4

CoA(ny 4 Conm + o0 G0

will also obviously be an integral of (2). Moreover, every other integral ¢(n)
will be linearly bound to those r integrals because by writing eq. (2) for the

integrals fl(n),..., fr(n), ¢(n) and by eliminating a, aj,ns ar.p among the

equations thus written, we obtain

i) fite o 1) .. fitn 4+ 1)
L) fn+ 1) ool fin 1)

L) i+ 1) o fr )

|
|
l
. ':(),
l
em s(n+1) ... g(nu+r) !

with the effective result that an identical, homogeneous linear relation exists ___ _

among ¢(n), fy(n),... fr(n) (qg.e.d.)

A system of linearly independent r integrals is called a fundamental sys-

tem of integrals of Eq. (2). Each integral can be expressed in a homogeneous
linear functiocn of r, the others constituting a fundamental system.
If fl(n), fz(n),..., fr(n) constitute a fundamental system, the same kind

of system will also be constituted by

Cur s+ Cpa o) + - ot e i), h=1,2,0007) (3)
.k being arbitrary constants, provided their determinant is different than
zero, It can be said that (3) effects the substitution (cp.y) on the primitive
fundamental system.
9. By setting the special value z of n equal to zero, it is often conven-

ient to consider the fundamental system f1(n), fa(n),... fr(n) such that

18
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H0) =1 , f()=0 , fyz; ... fio-1=0

£.00=0 , f()=1, £,2)=0,...f0~1)=0,

LO,=0 , Aid)=0 , fl2)=v,.. flr—D=1.

Such a system will be called "principal™. £Avery other integral ¢(n) /223

can be obviously placed in the form
)y =50) fin) + g(1) o) + .+ 50 = 1) fi(m).

The determinant D formed with the principal system has one outstanding propertj.

We set

!
1
g fin+1) firn + 1) o+ 1)
D(n) = ! :

7

fu(n) ' f.(n) o.. }
I
|

fin+r—=1 fiin+r-1...fi(n+r—1)

by multiplying respectively by ayr_1.n, @r-2.n>-+.» aj.n the second, third,...
and last line and summing with the first multiplied by a, ,,, we obtain, because

of Eq. (2),

Din+ 4y=(=UWa. Rm,

then if a,,, is not zero from n = O on, and noting that D(0) = 1, we have

D(n) = (= V)"t Upey + « - Ay

(4)

10. It is known from the elements of the theory of the power series of
one variable that these series can give rise to three cases: they are conver=
gent for each finite value of the variable, or for all values of the variable

the modulus of which is less than a determined positive number or they are not

19
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convergent for any value of the variaple which differs from zero. Now we pro-
pose to show that if a succession of numbers k, is defined for a recirring equa-
tion of the form (2), the coefficients aj,,, ag.,p,.+. ar.,n of which have, for
each value of n, a modulus smaller than a positive number M, the power series
LkpzP definitely does not belong to the third case, i.e., it admits a circle
of convergence of finite or infinite radius, but not zero. Indeed, let it be
Rupr = Qg Rogr v H Qpp Rprg + oo 4 O Ry

If the éalpe of kg, kys..., ky_y are arbitrarily chosen, two positive nurhers
A and R can always be assigned such that

[Bol <A, By <ARY, [R) <ARY, . ooy R, < AR-0,
moreover being aoble to _hoose R larger than M and larger than the only posi- /224
tive root of the equation
R i UL LI /L N
Then we have

o < AM(L+ R24 R 4. ..+ R¥%) < AARYY < AR

then
pga < AM(R® 4+ RY 4 . ..+ R¥) < AMR? ! £ AR2™2

and thus, in general, |k,| < AR“®. The series Zk,zU then converges at least

within the circle of radius 1/RZ, q.e.d.

11. The preceding propdsition cal be generalized. If the succession of

numbers k, .s definite for an inhomogeneous recurring equation

I'.le =Wy I‘u+r—l Flay Ryipg ko v Gy By 4 by

where the coefficients ay,,, 8),ps+++ 8y, have their modulus less than a posi-

20



tive M rumber for each n value, and the series Ebnzn admits a circle of conver-
gence with a radius not equal to zero, in such a way that two positive numbers

of B and p can re assigned so that

b < By

T claim that in this case also the power series anzn has a radius of conver-
gence which is definitely not zero. The values of kg, ky..., k._j are again
arbitrarily chosen, then two positive numbers of A and R are determined so that

tha , -
t ol <A, [k < AR {ll < AR, ..., [ b < AR2TY,

also taking MA > B, RZ > p, finally R larger than M and larger than the only
positive root of the equation

-3 2P~

932"'-—:5 - x* 6"1-!—a"2—2:0‘

Then we h.ve

Ikl < AMCE 4 R4 RY s + R+ BANR + R4 RE+ o R

and because of che hypotheses made on R: /225

.

] < ANRZ-t < AT

Analogously, we have

by < AM(R2ARY oo 4 RY) 4 Bp <ANRA2 ¢ RO T4 4 R2r-2)
then

Frpy < ANIEHY CARRTY

and in the same way it is shown that for each integer value of n, we have Ikn]
< AR2N: consequently the series Tkpz™ converges at least within the circle of
center z = 0 and of radius 1/R2, q.e.d.

12. When r functions of the integer n are given, linearly independent of

21
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5 - each other, fl(n), fz(n),..., fr(n), it is always possible to construct the

difference equation of the fcrm (2), for which the given functious constitute

E RN 57

a fundamental system. Indeed, every other integral F(n) of that equation will

e

be associated by a hemogerecus linear relation with constant coefficients with

e

fl(n), fz(n),... fr: it follows then that (Sec. 7) will be

[N

F(n) fyGn fi(m) N X))
n+1) filn+1) filn+1) ... fL(n+1)

.

! ]

| |

1 i =0,

|

| l
Fon+r) fin+r) fi(n+7)...f@n+r) |

and this is the required equation.

13. Again indicating a fundamental system of integrals of Eq. (2) by fl(n),

fz(n),... fr(n), every other one of its integrals can be put in the form

L i) Fes iy + . ..+ ¢, ().
Now, as will be evident from the following, it is very important for the casz
in which the equation has an integral with the property that its ratio to each
other integral of the same eauation tends to zero when n = =, The integral

having this property, if it exists, will be unique* by its own definition:

this integral will be the so-called distinct integral** and when Eq. (2) has /226

such an integral, it is said that it defines a convergent algorithm.

’é When the ratios fl : fr, fz : fr,..., *r—l : fr have been determized as
well as the finite limits for n = «, the quest for the distinct integral of Eq.

(2) can be reduced to a similar search for an equation of the same form, but of

. *Two integrals in one equation of the type (2) are not considered differ-
E ent if their ratio is a constent.

*%0n the generation of recurrent systems, etc. Acta Mathematica, Vol. 16,
p- 341.
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an order which is smaller by one unit.
If we set indeed

f.(m)

lim -5 les
1]
rz_r fr{'i}

and consider the functions of n

flln)y —a, f,(n) |, fullny—o, f,(0) ooy Fogd a2, f. 1)

in the light of what was said in Sec. 12, we can coanstruc’ -h~ difference egua-
tion of the order r-1, of which these r-1 functions, cle rl- without a linear
relation, congcitute a fundamental system. Now if thi equation admits cf the
distinct integral, it is clear that this wovrld ve tt- dist.nct integral also
for the primitive equation and vice versa.

14. Let us give special consideration to ti: homogereous equation of the

form (2) in which the coefficients are constants, namely
fn'—r":'ni f,‘._, A R f":x:'. (5)

If o; is a root of the algebraic equation

ray 2V ra Lt =0, (6)
it is obvious that ain will be the integral of (5): if, therefore, all the

roots of (6) are distinct, the general integral of (5) will have the form
fa=cia® om0+ ¢ 7"

If there is an a, among these roots, the modulus of which is less than that of
any other, urn gives us the distinct integral.

When (6) does not have all distinct roots, but h of them are equal to o,
it is readily evident that the integral containing h arbitrary constants, 1227

corresponding to these h roots, is given by

23
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If the roots of (6) are distinct, a linear relation with constant coefficients

cannot exist among the uy™, a,%,... .
C,2,"+Cyz+...C2"=0

By forming the determinant D for the aln, 2, ..., arn, the well-known Vander-

monde determinant, different than zero, is obtained. If one of the rjots of ay

7

is multiple of the order of h, a similar relation cannot exist among cxln, naln,

oy

n

h"’-aln, W s arn either, because here also in forming the determinant

eeey T

N,
i

D, the theory of determinants readily* demonstrates that its value is different

than zero. To furnish an example upon which an easy demonstration can be given

iy B R

in the general case, let a; be a double root and the others, aj, 0z,... @

n’ be

simple roots. The determinant D is then

A
Y St AN ]

L ! 1 A R T
{ o (1+1) g Oy G, &, 1 a, a,
’ ] o ((+2) a2 gt oL..oe? =1 a,? 20, ag? a2
; |
l % EASRVESES DAL N I S a,t -1 a " o g

Now on considering the system of r equations with respect to the r un- /228
knowns @ys Ggyeee AL, this system is determined and therefore its determinant,

which coincides with D, is different than zero, q.e.d.

*Casoratl, loc. cit., Sec. 6. The method of decomposition of (5) is used
there in symbolic linear factors, quite obvious 1. the case of constant coeffic~-
ients. However, this method can also be applied to equations with variable
coefficlents as I have demonstrated in the two memorandums "Ou the Difference
Equations" R. C. of the Reale Accademia dei Lincei, January 7 and February 4,
189%4.
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CHAPTER III

SECOND ORDER LINEAR DIFFERENCE EQUATIONS
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15. In this chapter we shall apply the facts pertaining to equations of

the second order, which we are going to study more thoroughly. We shall write

the recurring equation in the form

flnzzan f/ul -+ ',)n fn '

(1)

and we shall suppose that b, is not null from an n on, and for example precisely

from n = 0. Let us denote the principal system of integrals of this cquation

MR T P AL TS AT 1 TR

by AL, B, i.e., that system for which the initial values are

.

e

every other one of its integrals can be written (Sec. 9)

fa=lod, + [, B, 2)

The property found for the determinant D(n) by Sec. 9 yields, for the case of

the equation of the second order:

D(n) =4, B, =B, Aper =(= D% by b

*Yn~10

then

Ag ey (- 1) boby.. by

B Bll*i n Blli-l- B

. i

and from this

/229

25

S e e -




E

Fon

+

e, ST R L

A HRRA TN 3 et

r-1

{ Rl s

AT S P SUURY SO SO L L RELTL R (3)

Bl B“_”. :. I; XY ]; Lo
b . v=0 iy Pubgy

It is now easy to show that:

"The necessary and sufficient condition for the existence of the distinct
integral of (1) is that the ratio A,:B, has a limit for n = o,

If ) is this limit, it is immediately evident that the ratio of A, - XBn
to every other integral hA, + kB, of the equation tends to zero when n = =, and
vice versa, if the distinct integral Op exists, this can be expressed in a

function of An and Bn in accordance with (2)
G, =06 A,+6,8B,,
then, dividing by B, and passing to the limit for n = =

. G . A . A ) ¢
lll—"—:ll]( - >=0 whence lim =2 = _ 2
il Bn mi Gy Bn + Gy 3 Bu Y

However, the condition of the existence of the limit for A, /B, is that A /B, -

Ap4y/Bp+r tends to zero for m = », ji.e., it coincides with the condition of con-

vergence of the series

N3 b, ... b
—1)“59_1__“__1:3 , '
v};;< BB, (3"

Q
li

the remainder of which is. from (3),

Gl
B o= 0bob, by X (- Pelaea e Duey

’
" v=0 a+y Pty

we then have the distinct integral given by
an::-A“+GB,l.

All this 1s but the condition of convergence of the continuous fraction /230

26



¥

D "tﬁ'&”xﬁﬁﬂ . ui("&_ﬂ o -]

(3'C)

P 3\%&1‘?’*2&5{{3’5

in a new form which, compared to the usual form, has the advantag: of adapting

Lo v

itself to the extension of recurring equations of any order. The numerators

'

and denominators of (3'C) do not differ from A2, A3,... An,... and B,, 53, ..

2

B ,..., respectively. The reduced (virtual) quotients A,/Bj and Al/Bl are 1/0

and 0/1, respectively.

The condition of existence of the distinct integral coincides with that of

the convergence of the continuous fraction. The value o now under considera-

tion coincides with the value of the continuous fraction and the distinct inte-

gral o, then is defined by the initial condition o¢j:0, = -0.

16. Poincsrl has been credited with a proposition which has great useful-

ness in the applications of the theory of recurring equations. We shall demon-

G IESPEN VRIS

strate this proposition for the case of equations of the second order, referv-

ing the reader to the original memorandum* for the demonstration in the case of

equations of any order.

Poincaré's Theorem. "Let lim a, = a, and lim by = b in Equation (0.

n=w n=«

The equation

2—ql--b=0,

(4)
which is said to be characteristic of (1) has roots o and B and fal > IBI. The
limit of the ratio fn+l:fn for an integral fn of (1) is generally equal to o

and exceptionally equal to B."

*0On Linear Equations, etc. American Jourral of Mathematics, Vol. 7, No. 3,

o
5
'
H
]
i

1885.

27 i
#
| &

\{A
X
l )



i

&
&é‘k
g’@,

(a) We put, fn being an integrai of (1):

fnzxn'*‘Yn ’ /',h,'—:(lxn—i—gYn,
from which we deduce
fll'H = Xni—l + Yn&ﬁ ’ fn+g =4 X,”_' + {3 Y/H-l'

From these we derive, taking into account Equation (1): 231

(cln o+ bn — g']) Xn -+ ((1" Z + bn . @7‘) Y"
hh-‘—l = - - o L Y S ,
-3

(q'z —a, - bn) Xu + (a?' -y ?a - b") Y”
a—§

YIH-I =

and putting

i
=

@t —a,a—b, \ gr—a,p-b, —
a2 a0 a-—-3 "

we obtain

x.’l+l =a Xu - (Au Xn, + Bn Yu) »

YﬂH =; Yu + ("\u xn + Rn Yu) ’

where A,, B, tend to zero when n = . Having placed G, = Y, : X, we have, on

dividing the preceding equations term by term:

1
+ B4 Ay =
G =G ?____.l.__.'.'_G’! . (S)
T e~ Ay =B, Gy

(b) A positive number XA can now be determined, which tends to.zero with in-

creasing n and such that for each positive number k between A and 1/
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£
,‘:“";
§
A

] 1

| , _
|<im-—n“—-B“k ,
‘

from on2 n onward. The preceding inequality is certainly satisfied if

(e cmmeaen.

i

€ being a positive number superior tc IAni, [Bnl and that it can be assumed to

be arbitrarily small for a sufficiently large n: it is sufficient to require

laj — 13 L oal =
R LI b Pl

(c) Let & be taken arbitrarily small and n sufficiently large in order to

have:

A 0 <e, [Blas,

if ]Gn] is also less than &, we shall have from (5;

and this can be made arpitrarily small, and in any event less than unity.

(d) This havirz been established, let us examine in what manner G, is vary-
ing with increasing n. Three hypotheses can bc made:

lst. For a given n, |Gy| is less than A < €. Then, through (c), lGn+ll <

1, therefore, it will also be less than A or it will be between X and 1/X.
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2nd. Let !Gn‘ be between X and 1/A. It then results from (b) that

o 1
F*Ln+An§*<lﬁ—A“~B”G

1
nl

and therefore IGn+l/Gn' is less than a quantity less than one and it remains so

as n increases.
3rd. Let finally !Gnl be greater than 1/A. Then ‘Gn+1€ either remains so
also.or it is less than 1/X, reentering into one of the two preceding hypotheses.
It is evident from this analysis that if {Gnl becomes less than 1/)A for
one n value, it would tend to zero when n=«, Except for this case, it is pos-

sible that ]Gn] may be always greater than 1/A, and then its limit is infinite

when n = o«,

(e) However we have

in the event that Gy = Y, : X, tends to zero when n = », we obtain from this:/233

in the event that G, tends to infinity, we then have

lim =g,
ne=on n

q.e.d.

17. Henceforth, we shall allow Equation (1) to contain linearly a vari-

able x in its coefficient aj,
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so that (1) will be written:

; fava=(a"x + ay") fyoo + by (5)

The integrals A, and B, in this case are whole number ratiounsl polynomials in x

as

s e

£
-

and it is readily evident that Ap is of the rank of n - 2 and B, of the rank

n - 1.

It is evident from Sec. 15 that the necessary and sufficient coudition

o for the existence of the distinct integral of (5) is that the following series
3
v be convergent
o

o= ¥ (=) boby - bys
f \::; Bv 1 I}v
: having made this hypothesis, we have
5; —_—
A V3 TR T N AN
B g= (= W T ) + .. )e
: Bu B, B, atl Pate
7
= If now the series involved in this second member and the terms nf waich
S are functions of x, it is expanded - formally - in a negative power series of

x, it is immediately evident that this series takes the form

+

o
&L

i

since B, is of the rank n - 1 in x. We shall express this fact by saying [234
that such a series is of the rank -2n+l in x. Upou forming then the distinct

; iutegral o, = A, - oB,, this integral will be of the ramk -n. Consequently:

"The distinct integral of (5) is formally representable by means of a sys-

tem of negative power series of x, of the respective rank -n."

It can easily be demonstrated that Equation (5) cannot have a second inte~
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gral of this form since the condition that fl, Fose-s fn,... be a negativé
power series of x of the ranks -1, -2,... -n,... is sufficient (if fo = 1) to
determine unambiguously and successively all the coefficients in this series.

Now it remzins to be seen if the developments in negative power series,
obtained formally in this manner for the o, values, have another significant
effect: this will be evident from the subsequeat Sections, in which it will be
demonstrated that "if a,’', an", b, have finite limits when n = », a circle
with a center in the origin and with a finite radius can always be assigned in
the plane of the complex variable x. Outside of this circle the distinct in-
tegral through (5) not only does exist, but this integral is also cénstituted
by a system o, of the negative power series of x, of the rank -n and convergent
oitside of the said circle".

18. (2) With this effect we shall assume that none of the a'n values nor

cheir limits can be null: then a simple change of variables permits of unre-

strictedly setting

lm a,/=2 |, lima,”" =0 ,ymbnrh
=0

fi=x n=»

The characteristic equation (4) of (5) thus bhecomes

22-2x2+1=0, (6)
having two roots which will be denoted by afx) and 1/a(x}; the modulus of a(x)
being p, p > 1 can be assumed for each x value, with the exception of the real
x values and those between -1 aud +l. The x values by which p is maintained
constaut are found on an ellipse with foci at the points +1 and -1.
(b) All the a,' values being different than zero, their moduli will have a

lower limit wnich can be 2 and ia a different case will be an effective minimum,
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different from cero which we shall denote by A'. The moduli of ay" and b, will
have superior limits which we shall indicate by A" and B. Finally let n be an
arbitrarily small, but fixed, positive quantity.

We des«aribe a c¢ircle of center x = 0 and of radius

A"+ D

R
' A ’

in the plane of the complex variable x and I shall call this circle R. Being /235

that B, = 1y B, = (ao'x + ao")Bl, if |x| > R, we shall have

é%ﬁ SB4v+ 1> 1+79;

thus

Slay el =l [0 > 1
2

B,!

¥
B,

B
a0+ 0 G-

'\ =

If we assume demonstrated up to a given index the inequality

Elﬂi>l +9,

b,
this is true for the following index, always assuming that |x| > R, since

|, B
(ln'.l’ ki 0,," + b#‘ BB’L 2 [au"r! - l(ln"f - lbh-j—;——’!— >+ e
n+i [(ERY

Bn+2

BIl-H

lowever, Poincaré's theorem teaches us that the ratio B,4.B, approaches
onie of the roots of Ecuation (6): therefore, tiie limit of this ratio can only
be the root o of the modulus greater than unity; we conclude, namely, that with

the values |x| > R, we have
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lim Basy
n—=n Bu

=a(x).

(c) Finally let us note that for the values ]xi > R, the Bn(x) cannct have

any zero values. If indeed we have B 9 = 0 for sucn a value of x, the follow~-

nt-

ing equation would result

an impossible result because the modulus of the first member is greater than
B+ n+ 1, while that of the second member is less than B.

19. The considerations developed in the precediig Section now permit us
to demonstrate that

"For values of x outside of circle R the continuous fraction defined by
Equation (5) is convergent (in other words Equation (5) has a 'distinct inte-
gral')."”

We note therefore that the value o of the continuous fraction is given by
series (3') of which it then suffices to show the convergence. If we con- /236
sider now the terms of the above mentioned series by their absolute values, the
ratio between one term and the preceding ome is given by

byoo By
B,
and this tends to the limit 1/[a2(x)| = l/p2 when v » «, and where p > 1.

Having then excluded the pussibility that the terms of the series can be

infinice (Sec. 18, c¢) for values of x outside of circle R, we conclude that for

such values of x the series (3') ronverges absolutely, q.e.d.
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20. The series (3') can one again shown to be convergent to the same de-
gree outside of circle R.
In fact, tihe modulus of the ratio of one term of this series to Liie nreced-

ing one is

now the quantity n, which can be chosen arbitrarily, provided R is selected
properly (Sec. 18, b), can be made to be (k being a positive number less than

unityj
B
‘>Jr“’

then it follows that

Ibvl%f#<:h <t
Since R has been chosen in accordance with the value thus fixed for n, and k is
independent of x, the result is thut (3') converges to the same degree outside
of circle R. The series denoted by Sec. 17 with op hds the same property which
is composed by the remainders of ..

However, since the series ¢ and o, are convergent to the same degree when
|x| > R, a known theorem on the theory of functions* shows that these series
are consequently analvtic and regular functions of x in that region and, as

such, they can be exparded in series of decreasing powers of x. The proposition

*Weierstrass: The Theory of Functions (Zur Functionenlehre). Monatsberi-
chte der Akad. der Wissensch. zu Berlin, 1881.
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that we have enunciated at the conclurion of Sec. 17 thus remains established,
namely that '"the distinct integral of (5) not only exists outside of circle R,
but coincides with the unique integral representcd by the negacive power /237
series o, of x of rank -n, which converges outside of the same circle*".

21. The propositions demonstrated in the preceding Sections now permit
applying to A,(x), B,(x) and on(x) all the properties that there are for the
numerators, denominators and remainders of the reductions appearing in the ex-
pansion of a given function in an algebraic continuous fraction. We shall not
d’scuss these properties further because the reader can secure information on

them by consulting the first part of Vol. II of the Handbook of Spherical Func-

tions by Heine as well as Chapter V of the first part of 7ol. I, and the book

by Possé: On Some Applications of Algebraic Continuous Fractions (S:z. Peters-

burg, 1886). We shall limit ourselves here to formally establishing an expan-

sion which we will have to refer to in the last chapter of this work, where the o
convergence conditions for a case with considerable generality will be given.

It is noteworthy that, as far as I know, nothing has been said in general about

the convergence conditions of such an expansion. Let us rewrite Equation (5)

in the form

a,,f,,+._.+(b,,’a:+b,,”)f,,“ + Cnfr. =0, (5')

and together with this let us consider the other equatiom, which we shall call

its inverse

*The studies related in this chapter, as those of the following chapter al-
80, can be extended with the same methods to recurring equations of order great-
er than the second. In the recent Memorandum: A Contribution to the Generali-
zation of Continuous Fractioas (Memo. of the Academy of Sciences of Bologna, S.

V., Vol. 4, 1894), I have also demonstrated the existence of the distinct in-
tegral and its representation by means of a negative power series of x, for

sufficiently large values of |x| for equations of the third order in a way ana-
logous to (5).

S
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Let Fn(z) be an integral of the latter equaction, for which the initial condition

holds. Then by multiplying (5') by S . (2} and by summing over all the vaiues

of n from zero to irfinity, and by considering for §

#, the integral B (x) de-

termined by By =0, By = 1, we have:

£x o6 N .
—x ¥ b, B,®)3,2) =B(h,"3; +u,30) + B0 S, + h IS, po ) s
n=4
now, upon taking (5") and the initial condition stated above into account, 238
we obtain
Nt WQ /e~ o
—® DV Bl 8, (s = S LSl
or
(=) L L, Bore S =
n=
hence
Lo Vs sy
= = - NS (2).
P A ) (7

This is the formal ekpansion that we wished to establish* and the effective
validity of which will be demonstrated in Sec. 55 for the case in which a;, by',

b,", ¢ are whole integer rational functions o the subscript n.

*Heine gives this development in the case of a, = ¢y = 1 (ep. cit., Vol. I,
p. 203) but he limited his comments to: the convergence is still assumed. 1t
is also presented by Jordan, Cours d'Analyse, 2nd editiom, Vol. II, p. 259. 1In
the works cited equation (7) was established by another method: the one used
by us has the advantage of being able to be extended readily to include recurr-
ing equations of any order.
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CHAPTER 1V
LINEAR DIFFERENTIAL EQUATIONS*
22. Theorem. "A necessary and sufficient condition so that an identical,

homogeneous and linear relation witn constant coefficients exists between r

analytic functions of x, ¢1, $oyeee ¢y, which are regular in a common interval

of values of the variable, is that the determinant /239
% L8 . %r
¢ 3 ce. @
D(x)=

R R A

is zero, in which the derivatives with respect to x are denoted by superscripts'.
(a) The condition is necessary. If indeed, C1s Caseee Cp being constants,
we have

C,?,*l-(',?z-l-...c,o,_:o,

it is sufficient to derive r - 1 times with respect to x and eliminate cy, ¢y,
.++ Cp to see that D(x) = 0.

(b) The condition is sufficient. Let D = 0, the reciprocals of the last
line being #0, otherwise the theorem would be demonstrated by one of them. Upon
deriving D with the rule for the derivation of determinants, all the determinants

which are obtained are identically zero cxcept for one, so that we have

*In this chapter we are speaking exclusively of analytic functions with
the variable x, although some of the propositions found here, especially those
of the first Sections, are also applicable to non-analytic functions, provided
that thev have derivatives of the first order. The theorems in this chapter
originate with Fuchs (Crelle, Vol. 58); the considerations of Sec. 27 stem from
Casorati (Memorandum cited).
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and in order for D to be identically zero, D'(x) = 0. Now if Uy, U2,... U, are
the reciprocals of the first line in D: those of the first line in D' will be

the respective derivatives and we chall have

Uyze +U5 +...+0e =0
Vs r Uyl 2300
L and 1240 _
107, U, ...+ ULg=0

}

Nt T2 Tt tr=2 T {r-2 N
\Di‘?l( YU e L+ g T =0,

then, because not all tle determinants of the matrix of this system are zero,

we have

UNESS (AP U LRSS VOISR W

from which

dlogl, dlegl; Vs
T Tum T Iy + Uy = constant,

and therefore a linear relation with constant coefficients exists between ¢,

¢2,... ¢r, q.e.d.

23, We shall consider homogeneous linear differential equations of the
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nth order in the following:

AWM Ay L A y=0, @H)
where Ay» Al“‘ A, are analytic functions of x, regular in a common interval of
values of the variable.

(a) An equation of this type has as many linezrly indep~-.dent integrals as
the number of units of its order. Assuming this to be true for the equation ot

o order n - 1, let us put

. Yy=usg;

%

i. substituting in (1)

. Asu™ 4+ (N2 + nAp)u v ... =0, ' (2)

g where the term in u is zero and therefore (2) is a linear differential equation

%' o of the order (n - 1) in u' and has, as supposed, (n - 1) linearly independent N
& integrals ¥y, V¥3,... y,. Let us now comsider the functions

¢ %ad , Sfladm ..., )Y, de;

g¢ all these will be integrals of (1): moreover, if the determinant D(x) is formed

e

for these functions, it is immediately evident that it is equal to /241

s

Y, L/
L £ % e s .Tn

L R Y

i
+ E;
£

$7 @D L g
for hypotheses different than zero.

(b) If ¢, $pyee., are integrals of (1), each expression c197 + codn +...

will also be an integral.

(c) If 41, $gs++. $p are n lirearly independent integrals of (1), every
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other integral ¢ will be of the form
@=CyGy+Ca%y+...0 I
in fact, by substituting the values ¢, ¢15 #2545 ¢y in (1) and eliminating

the coefficients Ag, Aj,... An among the identities thus written, we obtain

(m n—p
| ;\"/ S\-u [ G
’ ¢ 5 g 5
n (n-1) 1!
9.'1( ! ;Il Tu ".:n ’

with the result (Sec. 22) that a homogeneous linear relation witn constant co-
efficients exists among ¢, ¢1,...¢n.
24. A system of n integrals of (1), among which no homogeneous linear re-

lation with constant coefficients exists, is called a fundamental svstem of

Equation (1). Let 97, $2,+.., ¢ be such a system: if we set

Q=S +QaZat e e QunGn , (=1,2,...0) (3)
the determinant being § = L * ay ja8;5,9...8,,, different than zero, the system
¢1, $pyeen ¢p will also be a fundameatal system and vice versa, each fundamental
system is expressed by means of one of these ir the form of (3). Let A be the
determinant formed, as D, with the integrals ¢y, ¢j,... ¢, it follows from (3)

that [242

A=¢D,

which is expressed by saving that D is an invariant of Equation (1). If in the

determinant
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the last line is multiplied by A; and is added to the first, second, ... n - 1,

multiplied respectively by A, Aj.1,... Az, we obtain AAOD'(x), whence we have
for D the notable expression:

A
- fx’ dz (4)
D(x) = ce *

25. Fuchs theorem. "Equation (1) has a fundamental system o’ integrals

which are regular analytic functions in the neighborhood of the point x, taken

in region T in which the analytic functions

are regular.”

For the sake of brevity we set A;j/Ay = By, (i =1, 2,... n) and Equation

(1) will be written

.y(ll).*_B’y(n-l).*.Bzy(n—z) + ... + Rn'yzo, (l')
The expansion of the functions B; in the neighborhood of x, will now be

considered and for simplicity we set x = 0 instead o™ X = ..,;. By denoting with

p the radius of a circle of center s

0 within which Bj, Bjp,... B, are regula>,

we have, when !x] < p,y:

B‘=(7,-.u+n‘.l.’1:+(l‘~.2§-... ’ (!‘:1,21111“/-

1

We now attempt to satisfy (1') by putting

/243
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y=f@) =k, + bt Ry, a4 (%)

The coefficients ko, kl""’ kn—l having been arbitrarily chosen, and notiug
that k, = 1/w!f (V)(O), we can determine from (1'), by means of successive de~
rivations, y(n), y(n+l), y(n+2),... as a function of y, y',... y?1, nanely k,.
kn+l’ kn+2"" as a function of kg, ky,... ky_3. In cae expressions of ky as a
function of ko, ISEREE kn-l oinly operations of summation and multiplication on
the quantities a; , and kg, kl,... kn—l are involved, these latter entering
lincarly.

The equation can then be satisfied formally with a expansio.i uf the form
(5), containing linearly the n constants kis kgyeoo ky. It remaius to be
demor.strated that this expansion is convergent in the neighborhood of x = 0.

For this purpose iet us denote by M a positive number greater than the
maximum moduluc of By, By,... By within the circle of cen*er x =0 and radius

r < p: by means of a well-known power series theorem ve shall have

. M
fasl<5-
Let us now consider the equation
m X Fin—q t (n~2) vt
YV = oyt Ly L V4

7
upon develcping in series the coefficient of Y(i), the general term of this
series will he M/rvxv, cherefore greater in absolute value than the correspond-

irz term in Bj. Let us now set
Vel 40T+ et A .. 7)

with A, = |kgl, Ay = [kgl,eevs ey = {Kpo1ls equation (6) will allow us .o de-
rive the values of A, Ajp1s... @S a function of Ay, Al,... Ap-1: the calcula-

tions required are the semz as those used to obtain ky, kpyj,... @as a function
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of kg, kysee. k1 from {1'): only that in the A, instead of the kpy, Ky,ee.
0 1 1 v 0 1
k,~1 values, their moduli are involved, as well as, instead of the 24,, the

positive quantities M/rY, greater in modulus than the corresponding aj,,, will
be involved. Therefore the coefficients Aj, A .7,... will all be posizive /244

and we shail have A, > [kv!. Therefore, in order to prove the convergence of

the expansion {5) it is sufficiznt to prove the one of the expansion (7).
For this purpose we observe that the recurring equation in XV, is ob-

tained from (6) by substituting the expansion (7):
\ Y .
EEmivdn=b . (e Y = =D E-2) L H)(; + ~“) Tyen ot

F AN =2) o (0 D Mypanr e (0 E 1) 3L, +3Dy,

now it is immediately evident from the theorem of Sec. 10 that this equation

defines such a system A, tuat the series I),x" has a determined radius (non

zero) of convergence: at this point the theorem is proved.

26. Given a linear differential equation of the form (1), a point Xy in
which the functions Al/AU’ AZ/AO,... An/AO are regular, will be called a non-
singular point for the eqnation: every other point will be a singular point,
Then we can state, as a consequence of the preceding thecrem, that:

"In the nzighborhood of each non-singular point of a linear diftereutial

equation all of its integrals are regular and analytic funciicas."

From this, and calling on the general principles of the theory of analytic

functions, the analytic continuation of each integral of (1) can be -onstructed

in each connected area in which Ay/Ay, A)/Ay,... An/AO do not have singular
points, and che analytic continuatlon of an integral will never cease to be an

irtegral of the same equation.

27. Let x, be an isolated singular point of equation {1). In the ev.nt
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that x, is the point to infirity of the sphere-plane of the variable x, we
c.rr, oul the transformation x = 1/z. It is always possible to assign a neigh-
borhood (r) of x, within which no other singular point of (1) is found: assum-
ing c¢he counterclockwise rotations to be positive, let the variable x, without
leaving the ncighborhood (r), execute a positive turn arcund x,: when, after
execution of this turn, the variable returns to the point of departure x, an

intezral ¢(x) will have changed in value, generally, and the new value is in-

dicated by ¢(x). If now it is uoted that the function

1
b= g log (s - o) (8)
is increased by 1 for such a turn, #(x¥) can be denoted by ¢, 0(x) by Gp4r, /245

and thus by ¢,,n, $p43>+--which becomes ¢(x) after two, three,...turns cf the
va_iuble in the positive directirn.

Now, these n + 1 functicns ¢r, ¢¢415++. $pr4pn, are all integrals of (1)
and therefore an homogeneous and linear relatiorn exists between them, whose cc-
efficients are constant with vespect to t, namely, functions of x with a single

value in the neighborhood of (r); this relation has the form:

Auq(-§-u+ Ai?tin v+ A?."?{‘ou—'! boeo® ’\n;l =0, (9)

and with respect to t considered as a variable, it is none other than a homo-

geneous lirear equation with constant coefficients, and as such can be integrat

ed as indicated in Sec. 14. We shall suppose that in this equation ¢ signifies
the general integral of (1), with n arbitrary constants.

Tf, having formed the egquation

Agw™ + 3, 0" + .. A +A,=0 (10)

this has all its roots distinct, wy, wp,... <y, the integral of equatior (9)
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will be given, in accordance with Sec. 14, bv

¢
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(11)
where Ujs Ug,e..u are constants with respect to t, namely, functions of x with
a3 unique value in the neighborhood of X If equation (9) has multiple roots,
and w is, e.g., a root of multiplicity h, for the corresponding h terms of (10)

(Sec. 14) the following will be substituted

0l LTl + .- Y.
2 (0 + 7y 12)

Having performed this, the value {8) is substituted in the expressions (11)
2wipk

and (12) for t, and these are changed respectively, putting wk = e , into

, (m_a,a)Q, +u, (:z?-—a;o}p’ +.. o 4du, (@ - ‘l’u)?" (13)

and

(@ — wo)p‘(v, + 0y log (@ —xp) + ... 0%, logh ™' (x — xp)).
(14)

Now if we substitute y in the first member of the equation (1) by an expres- /246
sion of the form (13}, we evidently obtain an expression of the same form, name-
ly, of the “orm (11) in t. However, this (Sec. 1l4) camnnot be zero unless all
s officients are zero and the same thing is true if an expression of the
form (14) is put i (1), whence i‘t can be concluded that:

"If the equation (10) has all its roots distinct, equation (1) admits n
intezrals in the neighborhood of X called canonic integrals, which form a

funaamental system

%k
U (@ - xy) v T

. (15)
vhere u 1s a function of x with a unique value in the neighborhood (r) of X3

if equation (1C) has a multiple root Wy of multiplicity h, (1) has h incregrals
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in the neighborhood of x,

1
T (@ — Ly,

7 {x—a ) ogim - ) + vy - )
. (16)
]

-
b, V1

. n Iy - .
V(v loghm—a ) s e, Mot -y L e (em) L e

28. (a) The demonstration of this theorem of Fuchs that was given in the

preceding Sec. stems, as stated, from Casorati. Equation (10) bhas been called

the fundamental equaticn relative to the singular point x,, and the determinant

the equation which has pj, py,... pp for roots and is deduced from the funda-
mental by setting = eZﬂip.

(b) The following method is suitable for forming the fundamental equation.
Let ¢1, ¢95... ¢y be any fundamental system of (1) and v a canonic iﬁtegral.

When x rotates around x,, d will change into a new integral 3k of (1) and thus

wa%a b et Tgnia o (’5;|'2-~-71); an

-«
n

1t

R
~
pe

!

2
>
w

these formulas give the linear substitution which the system (¢1, CPORN ¢n)

undergoes after one rctation of the variable around x,. Now having

-G-!

=w¢

»

it will be, having set 247

q‘=cc?|+cz?z+ e 0%y

substituting (17) and noting that a homogeneous linear function of ¢, LPYREE
$y with constant coefficients cannot be zero unless all its coefficients are

Zero:
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Clay -0 +c o+ ... +e,a,, =0,

CoByp+Co(Gpn~ )+ ...+ ¢,0, =0,

i+ Gyt .. 4 Ca(2, —0) =0

from which

Gy — W Oy .. Oy
%y Gy — e Ogy

=0.
a,., a,, cee BQua—w

This equation has the same roots as (108) and therefore coincides with it;

it does not depend on the fundamental system from which it originates (because

‘its roots are independent of it) and therefore its coefficients have becn given

the name of invariants of the differential equatioan.

(¢) The determinant equation can be obtained by the formation of the fun-
damental equation, after setting w = e21rip in it; however, y = (x - xo)o can
also be placed in the differential equation (1), then expanding the first mem-
ber of the quation by means of increasing powers of x - Xqe When in this de-
velopment a minimum power of x - Xn is found, its coefficient, set equal to
zero, will give an equation in p and, precisely, the determinant equation.

The fuimulas (16) are presented instead of (15) when the determinant equa-
tion has equal roots or roots differing from each other by integers.

(d) Results analogous to those of this Section and of the preceding one
would be obtained, assuming that the variable rotates around a system of many
singular points.

2%. The operation by means of which, given a system of quantities $1, 452,
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ees ¢n, we obtain the quantities 51, 52"" En by using the relations

|

1
i

is called linear substitution; this

G =Xy Tt FarFa b F ATy
Ga “ 0y Yyt T - + &, %,
?n:—:an£91+an3?2+"'+anﬂ?l.

efficients

Since the determinant of

ferent from zero, we can 2xpress @j,... ¢y by means of an analogous operation

performed on 51, 52,... S

The operation uader discussion, which can be represented in abbreviated

n’

Oy » Ty g =0 oy Ty
Oy 3 Gaz s o ooy T2
Tay s G2 s < Tuwe

oreration is defined by the system of co-

(a)

the suustitution Ztallalz...ann is assumed to be dif-

and this operation is called inverse of the first.

Yorm with A(9), is the element of a calculus called the calcuius of linear sub-

h ]

stitutions; the inverse operation of A is represent. >y A™"; if a second op-

eration is defined by the

system of coefficients

"
I A
?’2] ’ 322""’@2“

@," y 3,‘2,""@“

(®)

the operation which consists of executing first operation A, then B on ¢l’ b9,

«++ ¢, is denoted by BA.

BA

I+ should be noted that AB is not generally equal to

when this is the case, (that they are mutually equal), th: substitu-
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tions A and B are said to be commutable. It is easy to verify that "the de-
terminant of the product of two substitutions is equal to the product of the
determinants of the single substitutions."

It is also immediately evident that if substitution A is applied to a sys-
tem ¢, so that ¢ is changed into A(9), a system y = B(¢), obtained from ¢ by
means of a linear substitution B, is changed into BAB_l(w).

When an ensemble of oper=tions in su~h that, by combining the operations
therein contained in some way, operations of the same ersemble are always the
result, it is said that that en:temble forms a group.

30. *Given a linear differential equation of the form (1); let x, be a
non-singular peint and £ a closed line and, departing from x,, let us return

to it without passirg through any singular points. In the neighborhood of x,

let ¢35 ¢95... ¢, be a fundamental system of integrals: this is such that ¢,

will be a positive integer power series of x - x,; if the analytic continuation
of each of these series expansion is performed along line £, it will return to
point x, with an expansion equal to or different than chat with which it had

departed but which in any event can be put ia the form

?h :a’u §,+ahng+ « v +"l.-n?n' B

By following che line 2, a linear substitution A then performed on the fun-
damental system ¢}, thus a linear substitution corresponds to each line which

leaves point x, and returns to it. Since the ensemble of lines leaving point

*For the concept of group of a differential equation and for its determi-
nation, see also the Memorandum by Fuchs (Crelle, Vols. 56 and 65) and Hambur-
ger (op. cit., Vol. 73), those of Poincaré (Acta Matematica, Vols. 1 and 5, in
various lucations) especially that On the Groups of Linear giguations op. cit.,
Vol. 4 and Volterra (Memoranda of the Italian Society of Sciecaces, S. III, Vol.
6, and R. C. of the Circ. Mat. of Palermo, Vol. 2). See also Jordan, Cours
d'Analyse, Vol. 3, p. 193.
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Xy evidently constituces a group, and since the line composed of the two lines

L', 2" successively traversed corresponds to the product BA of the linear cub-
stitutions corresponding to &', 2", it follows that the linear substitutionms
vhich can be performed on the fundamental system ¢y, also constitute a group.

is group is called the group of the differential equation. If instead of

the fundamental system ¢, another, ¢, is considered, since y is deduced from ¢
by means of a linear substitution H($), to the substitutions A acting on ¢

correspond the substitutions HAH—l(w) on Y. The latter substitutions can be

regarded as constituting a group which does not differ from the first because
one and only one substitution of the one corresponds to each substitution /250

of the other and vice versa.

31. Let us consider a linear differential equation (1) with a finite num-

ber of singular points zq, Zysers Zp besides the point z = « and with uniform

coefficients. To each singular point z corresponds a system of canonic irte-

grals (Sec. 27), for which the linear substitution which they undergo as a con-

sequence of a rotation of the variable around z is

v, 0 0 ... 0

0 w, 0 ...0

in the case that the fundamental equation has all its roots w distinct, aand the
modification to be performed in the event that some of the roots w are multiple
is readily evident. Now the group of the differential equation (i.e., the sub-
stitutions undergone by a fundamental system for all the closed lines departing

from the same point) will be found when we know the substitutions undergone by

51
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this fundamental system for the simple lines which, departing from any point X s
make one rotation only around the r + 1 singuiar pcints, since every other
closed path would lead to a combination or reiteration of these. These substi-
tutions will then be known if the roots of the fundamental equations relative
to 4 + 1 singular points as well as the relations which join the primitive fun-
damental system to the canonic integrals relative to each of the r + 1 singular
points are known.

It should be noted that a simple line around x = =, described in a direc-
tion assumed to be positive, can be reduced to the succession of the simple
lines described around the points Z1s ZgyeetZ in the negative direction: it

the substitutions undergone by

follows from this that the said S 52,...S

1’ r’

the system ¢ through the rotations around Zys ZyseeeZ o, and Sr+1’ that under-

gone through a rotation around x = », we will have:

8:8,...8. 8. () =¢,
or, symbolically, Sl S2 . . Sr Sr+1 = 1.
CEAPTER V £251
REGULAR LINEAR DIFFERENTIAL EQUATIONS. -
APPLICATION TO THE HYPERGEOMETRIC EQUATION
32. For applications of the preceding theory we must consider the equa-
tions (1) in which the coefficients AO, Al""An arc of the form
A,=P" A =P 1P, , A, =P)"*P,, .. A, =P, (A)

where PO’ Pl,...Pn are whole number rational polynomials in x of the respective
ranks r, r-1, 2(r-1),...n{r-1). The roots of PO will be assumed to be distinct
and be denoted by 215 ZgreeeZ e Such an equation (1) is said to be regular,

We do not exclude the fact that Pl, P2""Pn may be divisible by the s 'me
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power of x-zy; so that the equation (1) in which A, Al"" A are polynomials

n
of the respective ranks r, r-1,... r-n is of the indicated form, i.e., regular,
as is immediately evident upon multiplying the whole equation by AOH_l.

33. Let us consider the integrals of this equation in the neighborhood of
the singular point z, and, for simplicity, we reduce this point to zero by

putting x' = x - 2. We endeavor to satisfy the equation by means of an expan-

sion of the form

9= af (ko + ko' b gt ),

by applying the method of indeterminate coefficients; by that ¢ will be a cano-
nic incegral (Sec. 27). The term of the lowest rank in %' in the first rember
of the differential equation will be

b (g 0 6=1)ee-le-n41) 4 Q4o 0(2- Ders(0-142) + i 0,y 2 + 0, )07,

having been set

N mr—1), .
A= (Ot 03 & o Gy, @070 5
now since this term must be zero, the equation (determinant equation) /252
F2) = gy 2= Den(a-m s oy oo = T 2 b oot o0

(18)

should be satisfied and this will give us the values of p.
Now if equation (18) has neither multiple roots, nor roots differing from
each other by whole numbers, one of these roots p = p1 will be deteimined, and,

through tne same method of indeterminate coefficients, having set s = nr and

) =g 0G=D e ) b ay2(s-1) 0 nE2) 4ol g ot

SN

we have the equations
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Rofi(o) +kfolo, +1) =0,
Rofoop +Re fi(og + 1)+ s fo(o, 42) =0,
(19)

| Byosinfs—nl@otv—sin) by o fo, afostv=slat e K1) =0

\
by which the coefficients kl’ k?,... k,s..., are determined, ko remajning ar-
bitrary. The expansion ¢, thus formally determined, is also convergent within
é circle of center x' = 0 and with a radius which is not zero: this follows
from the theorem of Sec. 10, and from the fact that the limit ot fh(p1+u)/
fo(pl+v) for v = = is finite.

34. Now we assume that the determinant equation has two equal roots or
differing by a whole number u. This is the same as supposing that the funda-
mental equation relative to the singular point x' has a double root, since the
roots of the equations (18) are (cf. Secs. 27 and 28) the logarithms of the
roots of the fundamental equation divided by 27i. In order to handle this case,
it is convenient tc premise the following two observations:

(a) An expression of the form

P@) + 3@ logee ,

where ?(x),gﬁl(x) are power series of x, cannot be zero in the neighborhood of
x = 0 unless J(x) andjﬁl(x) and therefore all of their coefficients are zero.
.nis immediately follows from the last proposition of Sec. 14 as can be seen by

setting x = e2mil,

[~
N
W
W

(b) By deriving the cxpression xPlogx n times with respect to x, we

obtain
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this formula is verified fo: n = 2, and it is readily evident that if it is
true for a ,jven n, it holds also for n + L.

Having established this, the.general theory (Sec. 27) shows us that when
the fundamental equation has a double root, an incegral of the differential

nquaiion which contains c¢wo arbitrary constants exists and has the form,
¢ =vx'? +v,x7 loga’,

where v and vy are functions to a value of x' around x' = O.

If we now take a positive aud whole number power series of x for v and vy,

end we substitute the expression ¢ in the equatiocu (1), we shall have, in
accordance with the observations (a) and (b}, the following two systems of

equations in which fﬁ(p) represents the derivative of fh(p) with respect to p:

EIORENACEL

Kofiio) + Byf, (o + D+ he/y'(0) + sl e+ 1)=0,

. . - . .

T

. . 20
Xy—gpn feanff¥i— 8404 Byospnst fomumrlpdv—8+ 0+ )4 e T (20)

+kv fu(\ﬂ +v)- "‘)—‘nn f,: -n(? +v—3+ “’) +oot h‘l fO‘(? +v) = 0,

and
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Bofy(p) + %o +1)=0,
(21)

’zv—u-/cflan(.o -8 l-"”') *'hv- swu-lfs-» ‘\(? =St :) *'"'*“h': fo(? ) = 0

1

. . . . . . . .

In the event that the determinant equation fo(p) = 0 has two equal roots, 1254

v ho being arbitrary; then,

system (21) gives us the values of h;, hy,... h,.

the first equaticu of (20) being identically satisfied, an arbitrary value is
given te kg and ky. ky,... are determined as a finction of the wvalues already
ocbtainced for tue h. In the event, however, that the equation fo(p) = G has two
roots differing by a whole rumber u (taken to be positive), the first equation
of (2C) no longe: is identically satisfied aad it should be true that h, = by =
s hp_1 = Q; the hu is arbitrary and the equations (21), from the u ¢ an on, o
determine hu+l’ hu+2"" The equations (20) determine ky, ky,... up to k;-j as
a function of the arbitrarxy ko; k 1is determined as a function of this and of
the arbitrary hy, and the fbllowilg equations (20) determine kir1s Ky42se+s by
means of substituting in it the vatues furnished by the equations of (21) for
241y hoyo,... The integral ¢ thus nas its coefficient determined with two ar-
bitrary constacts; the convergence of the power series v and vy is verified
within a non-zero circle on the basis of the tlz2orem in Sec. 10 for the series
vi and on the basis of the analogous cheorem in Sec. 11 for the series v.

A analogous procedure is followed in the event that the fundament;l equa~-

tion has a triple root: we will obtain in a similar way an integral of (1),

containing three arbitrary constants, having the fowm
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where v, vy, and vy are positive integer power series of x' converging in a
given neighborhood of x' = 0: and this holds both when the corresponding rcot-
of the determinant equation are equal and when they differ by vhole numbers.

An analeogous situation prevails for ronts of the fundamental equatiorn having
any order of multiplicicy.

It is hardly necessary to point out that, h-ving demonstrated the conver-
g:nce of the expansion in the prezeding power series in a circie of center x' =
0 (or x = z) and of non-zero radius, it follows from the »rinciples of the
theory of functions that ihe radius - . convergence of th. above mei.tioned series
will be at leant equal to the distance of the point z, from the near.st of the
other singular points.

Analogous considerations hold for the point x = «, as it is eviderrt Zrom
the transformation x = 1/z, and tie same results are maintained, provided that
tl.e positive integer power series of x are substituted with negative integer
power series of the same variable. If we put z,4; in place ¢f =, and substi-
tute, as usual, 1/x for x - «, and, lastly, if we use th~ symbol Px) to repre~
sent a positive and integer power series of x, we can state the folluwing re-
sult:

"A regular l'near differential equation with singular points zp, (b = 1, 2,
3,+++ T, ¥ + 1) in the rzighborhood of each gingular point and, in correspcmd-

ence to the simple roots p of the determinant equation relative to that /255

point, has canonic integrals of the following form

(@ - 2, -z (22)



Vot

AERRL "‘:"‘f:\%;'

LTy T Foy WL

L3

[

PIAL

i 3
IR )

P
i S e ¥

b,

w .
R R ] r*?“h“.h | S

S

Ry

PRY.

[ -t

O

'
\

Ramet bz 42
o

The presence of a multiple root p of the determinaat equation leads to an inte-
gral of the preceding fora and also to integrals of thc form oL

A ( (fx—:h)-’@{a:—:,,) + Pulz-z log (x-23Y)
-{ @-x° (Q {*-2,) + P, @-splog (x—z) + Do’ (T-3) !o‘;’(x—;,}j (23)
Y

r - - - - T - - - - - -

up to an iategral containiang logl (x—zh) if the root p andAof the order A of
‘multiplicity.”

35: By denoting witg ph-k(k =1, 2, 3,... n) the roots of ‘he fundamenéal_
equation relative to the point zh(h ; 1, 2,... r, T 4‘1) 2ssumed to be simple,
fhe iﬁtegrals of the form (22) relative to that peint will fora a fundagezt;l‘
system which we shall designate by ﬁh; By representing with S the linear sub-

stitution undergone by yp through a rotation of the variable around zp, the de-

terminant of the substitution will obviously be

2z

Frx -
3. 1= 3
[Sl=e

hpes

Now, each fundamental system 3 caa be put in the form Tyip, Tp being the symbol

- - of a convenient linear substitution, and the substitution undergome by ¢ through’

a rotation of the variable around zy is IhShTh"l (Sec. 29). Recallinz now the
relétion established at the conclusion of Sec. 31 hetween the substitutioné

undergone by a system ¢ in the rotations of the variable around the r + 1 singu-
lar points, we have

T8, T TS, Tht ... Tt S Tt =1,

and since the determinant of the substitution product is equal to the product

of the determinants of the single substitutions, (S=2c. 29) we have
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whence

ané therefore the sum of th2 gy i ill be a whole number. However, the ex- /256
pressiors (22) are not changed if the ¢ varies by whole numbers, therefore, we

can wrice without restriction:

(24)

36. The regular .ifferential equation has its coefficients formecd by the

polynomials Pgs Pyse-0 Py (5ec. 3z) of the ranks r, r - 1, 2{r - 1),... n(r - 1).
Given the siugular poiats zj, Zy,... 2., roots of Py, the equation contains the
coefficients of Py, Py,... P

> in the amount of

- rn(n-:-'l)—n{n-i)
2

unknowns; on the other hand, the n(r + 1) exponents ¢y i, being related by the

relation (24), constitute a system of n(r + 1) - 1 unknowns. The number of the

first is generally greater than that of the second; the equality condition

mn+Hh—nn-1; i
e ;,»———‘—-— =n{r+1)-]

easily leads, as is evident by resolving with respect to n and making an ab-

straction of the value n = 1, to the equation

= =y whence n = 2, r = 2
r-1 .

Frowu that we conclude that:

"A regular linear differential equation of an order greater than the first

order is not generally determined by the knowledge of its singular points and
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of the exponents in these points. However, the equation of the second order
with twc singular points at a finite distance is completely determined by the

knowledge of these numbers."

37. The regular equation orf the second order which we have obtained in

the preceding Section wiil have thes Zorm

Pty + PPy’ + Py =0,
being

Po=(@—2)(z—2)

and P; and Py whole nuwber rational polynomials of the first and second order

respectively. Meanwhile, an easy linear transformation of the variable permits

the singularity of the equation to be bro-ght invo the point 0 and into the /257

poiat 1, (zl = 0, z9 = 1); thus, the equation under discussion can be written

- 1)y i - Dz L)Y+ 02+ 9y =0, 25)

where the coefficients h, h', g, g', g" have to be determined as a functioa of
the exponents pp | relative to the singular points x = 0, = = 1, x = ». Qur
purpose now is to determine them and study the properties of the integrals of
the equation (25); then to simplify the form of the equation itself with the

use of these properties.

For this purpose we note primarily that if we set

y=a"(@z-1)'v, (26)

the function v will satisfy an equation of the same form (25), which can be
readily verified with the simple substitution. By denoting the expcnents rela-
tive to the point x = « with p and o', those)relative to x = 0 with p, and Po' s

those relative to x = 1 with p; and p;' (excluding the case in which p and p'
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are equal or different by whole nubers and thus for p, and po’ «nd for cq and

p1") the substitution (26) will transform these pairs of exponents into

. p4+D . 0"FP 5 P0—DP 20 =P i n—,%~q

respectively, so that “the transformations of the form (26) leave unchanged

parie O W o R

the differences of the exponents p - o', ¢, - 5,', £7 - 2¢'," furthermore,
P o~ Fo s f1 9 P

o art

and q can be chosen in such a way that for the new equation (25) two of the ex-

é ponents not relative to the same point, e.g., po' and bl', are equ.. to zero.
g Having established this, the determinant equations of équation {(25) rela-
é tive to the points x = ®; ¥ = 0 and x = 1 are calculated without difficulty
3
i (Sec. 33) and are, respectively
H .
e+ 1 -l +g =0, -
ple—N—Nhp+g"=0,
o ' plo -+ N+ +@+9' +9)=0;
and among these, the “irst has for rdots ¢ and-¢', the second po and c ', the
| third o and ol'. Lf -~ now suppose, in accordance with what has been said,
) equation (25) tc be reduced so that 5,' and ;' are equal to zero, we shall /258
; ‘ have
% g"=0 , y+¢¥9"=0.
or

By putting & and f in place cf ¢, p', the {irst of the precedin: determinant
equations gives us

h=a+B+1 , g==-g'=aj;

6l -
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then putting p, = 1 ~ y, we have h' = - y, whence p] = y -~ a - 8; (24) is thus
verified by these expressions.

By substituting in equation (25) fof h, h', g, g', g'" their values and re-
ducing, we obtain the same equation in the form:

c@- Ny +(@+E+Dax—3)y +a2y=0. 27) -

Tais is given the name of hypergeometric differential equation; its gene-

ral integral is called a hypergeometric function, a particular integral, a

branch of the fumction. It should be recalled that the substitutions
1 1
r=— , &=l-2 , Z=le— |, Z=—= , T==—,
- 2 Z

which form a group*, transform (23) into an equation of the same form in which

exchange of the éxponent pairs is the only modification.

38. Whenever, by following the method in Sec. 33, we wish to obtain the
expansions of the canonic integrals of (27) around the singular poincs 9, 1, =,
we shail easily find that these expansions are expressed by means of hypergeo-
metric series. In the neighborhooa of the point x = 0, *the exponents are 1 - y

and 0, and the corresponding canonic integrals are

m'-TF\a'}'l"‘f ' B+!‘Y .2-—1 ’x) ed F(a‘,@,x.w);

(the fact that this last series is an integral of (27) has already been /259
noted as early as Sec. 4, c¢). The exponents are y — a -~ § and O for the point
x = 1, and the corresponding integrals are

(@-1)"*F Ry o ,'*{--a y Y—a-2+1,1-=x) ed F@a,@,at+l+l-y, -2,

-

*Called an anharmonic group for the well-known relati.nships between the
anharmonic ratios which give rise to # elements in a geometric form of the first
species.
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finally, the exponents are « and 3 for the point x = », and the corresponding

integrals are

1
| _ . , 3 - -
wﬂF(a a-bfl,a—ﬁ+l’5j'cd I’F<ﬁ,ﬁ+YT‘sﬂ’“‘l’w)‘

Turning now to the Gauss éeries, the properties of which are summarized in
Chapter I, we recall that this series is convergent for Ex! < 1 and possibly
for points of the circumference ix[ = 1 but never for»[x] > 1 if the values of
the parameters are finite. The analytic function represented by this series
has an analytic continuation which always satisfies equation (27) and is there-
fore a hyperg;omctric function; however, in order to know the value that the
fun:tion assumes when the analytic continuation is performed in accordance with
a determinate line (not passing ‘through the points 0, 1 and =), it is necessary
to know the group of the differential equation as defined in Sec. 27.

39. The determination of the group of equation (25) doas not present

greater difficulties than f.r equation (27) and thereiore will be performed

1 !

through the former. We shall denote with u, u', with v, ' and with v, w' the
pairs of cansnic integrals relative to the points 0, 1 and «. The group of the
equation will be completely determined if we know the substitutions undergone
by u, u' for the three simple lines which, departing from a point xo(fx0§ < 1),
surround nnly one of the points 0, 1 and =, since any other closed path would
lead to a combination or reiteration of these simple lines. We shall denote
witn A, B and C the substitutions relative to these three lir-=s.

The substitution A Is known because after one rotacion of x around O, u

2mipg 2mip'y

and u' are changed into ue and u'e , as are also known the analogous

substitutions undergone by v, v' during a rotation around 1 and by w and w' dur-

ing a rotation around =«.
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Now setting
- f W= a0+ a0

( W= gy Uty V'

wo=2y et Bt

N
W= Py Wk 2y,

or symbolically, (u) = S(v) and (u) = S§'(w), it is evident that if the sub- /260
stitutions S and S' were known, the A, B and C and thereby the required group
of the equation (27) would be immediately deduced from them. |

In order to determine S and S', we observe that a rotation in the positive
direction around x = 1 is equivalent to a rotation in the negative direction

around x = » followed by a negative turn around x = 0, as also can be deduced

from the relation of Sec. 31, which in our case iz writtem ABC = 1.
Therefors, we shall have
anip TRip ’ « —om) —~3%if —2%in’
a2,c ‘vdoane Tveoe “(3ye wEgne w'),
and because
GV + Q¥ =Py 0+ B0,
we have, by eliminating v',
anin anin ’ -2 +p) -3Rin ’ -;:i((‘o-yg') -zzi9'|
ayle '—e o=y (e °o—e Nwt (e - ) w’
Analogously we find
anip amin ' ~27=l(9°'+(u —anis "2“‘(90'*? "‘-‘"“9" ,
ayle '-e gy -e Y1t (€ -e )w

however, tnese linear relations between v, w and w' cannot be distinct, other-
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wise w = kw' would be deduced, which cannut te; therefore, the coefficients of

the preceding relations should be proportional, and we have

Analogously, we obtain, by eliminating v:

-2 B g -2Rip —2ni(G o) -2Rin

2y € —e 'in e " e

Q
S

1

o

|
i

-27 s = —aNE 1) —2T5
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and from these equations we can determire the ratios

Fad
)

By Gin

-

3 i
s

|

Y.

w

2y 7,
as a function of one of them, and, imasmuch as u, u', v, v', v and w' are de-
termindte except for .ie arbitrary constant nmultiplier, the substitutions S and
S' are thus determina:d.

It should be noted that the determination of the preceding ratios remains
the same if the exponents p, ¢',... vary by integers; it follows that

"Those hypergeometric functirns whose parameters differ by whole numbers
have the same group of substitutions.”

40. We should now like to demonstrate that

"If three equations cf the form (2%) are such that the exponents i. the
points 0, 1 and = differ by whole numbers, a linear relation with rational co-
efficients exists among the integrals of these equations."

For this purpose let us denote the canonic integrals of the first equation
relative to the point x = O by u and u', those relative to the point x = 1 by v
and v', those r:lativs to x = © by w and w'; vhen, the'analogous integrals 1or
the second equation by uq and ul', vy and vq', wy and wl', and the analogous
integrals for the third by uy and up', vy and vy', wy and wy'.
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Then we form the sum of the exponents relative to the point x = 0 for the
fivst, second and third equations and denote the smallest of these three sums
by 0,5 thus o would be the smallest sum relative to x = 1, and ¢ the smallest
sum relative to x = =,

It will evidently suffice to demonstrate the theorem for a branch eof each
general integral, e.g., through u, uy and uy.

In this event, considering the determinant to be D = uj'u, - u2'ul, this
gives an analytic function which has the form of xCO@tx) in the neighborhood of
x = 0. By expressing u and u' as a function of v and v'

U =y U+ a0

W=y U+ Uy ¥

1

the same transformation holds for ugs ul' and Uy, u 1

' as a function of v_, v
2 1
and Vo v2', inasmuch as the three equations have the same group; thus the

function D in the neighborhood of x = 1 will have the form
g s
(24q &22 — %21 Uyy) X ! P {x— i),

so that the function

—_— \—50 o— -7
G=Dx °@-1)

is regular over the entare plane except when x = «: thus, acccceding to the
principles cf the theory of functions, it is a ratioral or trascendentil inte-

ger function. However, when x = =, D has the form x'oyz(l/x), whence /262
N A N
= Cat 7y %‘a(:’;) !

an¢ 7, + 03 T being finite, ¢ will be rational and an integer (and remains so,

i ving . lependentiy shown that o, + 3p+o0is a whole number). Thus
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Analogously

7o 3

-, - o
wn-vu,=w@-"6 , Wu—uw=e, @ - 1) Gy,

G, and G2 also being whole number rational polynomials. Tt follows from this

that the identically zero determinant - :
Fa ow  uy i
! u' u.  ow, ¥,
N O T | T

can be written - 7 P
Gu+ Gru, + Gy =0,
qg.e.d.

The relation among the contiguous hypergeometric “functions

-

case of the theorem now demonsirated#.

CHAPTER VI

o

A FUNCTIONAL TRANSFORMATION. ITS APPLICATIONS 70 THE GENERALIZATIOE -

OF HYPERGFOMETRIC FUNCTIONS ACCORDING TO POCHHAMMER AND GOURSAT

41. TIa a regular and linear differential equation

M¢W+Aﬁwm+..mF%Q=0

the rank of the polynomizls Ay Al"' A, decrease in order of one unit and.
therefore the rank of Ay can not be lecs chan n. If it is greater, and equal -

ton + p, we can set ¢ = w(p): the equation assumes the order m + p and in ic ¥

*Cf. Riemann, Werke, p. 67.
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the rank of each coeZficient is equal to the index of Ll Jzrivative that it
multipiiés. Therefore, eithe:, the regular equation is such that the coeffi-
cient oI é(h) in it is of the rank h, and in tiris case we shall call it normal,
or it is broﬁght bazk to c..is cése by means of the indicated seitius.

We write the normal equation in the form

BLsEa B, TV A .o B,2=0. (28)

where each polynonial B;, i3 of the ramk indicated by its subscript; the first

member of this equation is called the normal linear dififerential form of the

srder n, aind the two following operatz<ns are defined on this form. The first,
. . - ’ -
wnich will be represen.:d by D, consists of deducing from the form (which we

si;tall denote by A(4) or simply by A) the new form:

Di= an ;il-l) + B'“_‘ ?("!3 T B.’S .

where Bh' is the derivative of Bh; thie form is also rormal, but of the corder

n - 1; by repeating operation D, the new normal forms of the orders of n - 2,

‘n - 3{... witi L2 obtained

in-3)
P =BM® 4B, ¥ .. 02,

D’L - “ﬂ" ?Ql-;: 5 ﬁn—l" ?‘“1‘: +... i r‘l : LT

The second -~peration, which will be represented by S;, is defined by /1264

It 7

SA=3+eDi+(5) o L5 ()i,

where (ﬁ) represents, as usual, the binomial coefficient 9(92%%25'(°;h+1).

It is iﬁ;ediately‘verified that Sy;A is 2 normal form of *he order a, which

 can also be written
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. +1B,+ 3B+ (;) B 4.2 (;) B, )z,

The operaticns thus defined both clearly possess the dist-ibutive property.
They are alsc mutually ceommutable, whicl. can be readily verified. Finally, a
sizple calculaticn based on the known property of binomial cozfficients allows

the foliowing relation to be demonstrated

so that the quantity ¢ behaves like an exponent in the operative symbol S.
Particularly, SOA = A, or éymbolically, S0 = 1, and ir a-fom Al is deduced
from 4 by meaprs of the operatlon Sg» inversely, A will be deduced frem 31 by
means of the operation S_;, or symbolically, 5;5_; = 1*.

42. Let us consider the expression in which ¢ is any number which is

neither a positive integer nor zero:

4(1) dt ae i
{?Qﬂ}) [0-‘ \l ,;‘:; ( } (29)

where the integration is extended to a line A so that the second member has

meaning and that the integration by parts and the derivation L1der the sign ure

admissible. The expression . /265
[ Bosmd
w

(-

ot Al s g

1

will nov be able to be expressed as follows:

*See my memorandum On Liaear Differential Forms. (R. C. della R. Acca-
demia dei Lincei, May 8, 1892).

**For integrals of this form, see Pochhammer, Crelle, Vol. CIV. cf. one-of
my works in Mem. Acad. 8ologna, Vol. II, S. V.
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Being identically

By () =B ) + B, (t- %)

it will be

[ By Fndl _ ()' g -Ll’:"] G\H‘“_
]m - e B, W ¢~ ot w (i -x*’

now for the first of these integrals, we have, by deriving (28), then integrat-

ing by parts

e’ (i.dt ¢ {0
,[m (L —x)°H v )+[ :n)‘*’]

for the second, integrating by parts

god_[ =01 'J _zindt

w (t__w)’i (’. _.m)c i o) (l __:L)rq 1

éo tha_t

- (x)q(l)dl B(f)l'{;r;)-l-'xB L,\:c)*h
’m - -

=§,By(m ¥ (@) +1

L1 being an expression to the limits of the integration, containing ¢(L) line-
arly. -

Analogously we find

/’ B,y (1) ¢ (N dt
o (—-x)h

=S5, B, (@) ¢’ (@) + Ly

-
.

. . LY .

R XOLRICK

AT B, (@) ¥ (x) + L
(.. (l__a;)cf4 n\w)‘.' ()+ "

' where Lh is an expression to the limits of the integration, which contains

linearly
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From these, due to the distributive property of equation S, it follows /2656

that
A 7—:!1':'

i . ' 3 Rl
g ,

- R vy L

(30)
where L is an expression of the same form a§ Lhs which contains linearly $(2),
C8'(R),... ¢(n'l)(l) to the limits of the integrationk*.

The line A of iIntegr:ation may be chosen so that the pa%t'L to the limits is
zero; this can be done either by taking for X\ an open line and such that ¢(),
" (L),... ¢(n-l)(l) are zero at their ends or by taking for ) a closed line not
containing x and-such that, the variable having traversed its path and returned
to the point_of departure (beginning), ¢(%) and its first n - lrderiyétives )

have the same value. In this hvpothesis, (30) becomes : —

1 AR
fm G- C )

(30")
and the following proposition can be stated:

"If ¢ is .an integral of the linear differential equation A = 0, the ex-—
pféssion (29) will give us an integral ¥ of the transformed equation S54 = 0,
the line X being chosen so that the part L at the limits is angulled. The in- L
tegral'w contains the same number of arbitrary ccnstants of ¢ ana therefore
wiil be thé general integral of the equation SAA,FVO if ¢ is the general inte-
gral of A = 0". ‘ 7

We may add, recalling the property S ,,' = S,S,1, that -

*This formula is demonstrated by the case in which o is not a positive
whole number. If ¢ is such, we arrive at the same formula, but the procedure
in the demonstration is subject to slight but obvious modificaticns.
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"The integration of an equation S;A = O for a speciai vualie of o leads to
S the integration of the equation itself for every other value of ¢."
43. The foliowing observations can be added here:
(a) The property 8555 =1 immediately permits of transposing the definite
integral (29), i.e., of expressiﬁg ¢ by means of an integral containing ¢ undervr

the sign.

(b) All the equations 858 = 0 are regular, normal and have the sume singu-

e TR RN

lar points. Since fl(p) = 0 is the deterﬁinant equation of A = 0 reladivae Lo
‘a singular point, it is immediately evident that the determinant equation of
Ssh = O relative to tﬁe'same point is f(pt+o) =

(c) The equations SgA = 0 relative to different values of ¢ d1ffer1ng from
each other by integers have the same grcup and therefore n + 1 1ntegrals of

such equations are relatéd by a linear relation with rational coefficients. /267 -

{

(The.-demonstration "in extenso" of this theorem is left to the reader, a demon-

QTR b, S ARSI A PP SR O Jo o

stration perfectly analogous to that given in Sec. 40.

44. It follows from the theorem of Sec. 42 that whenever the integration

of an equation SzA = O for a special value o, of ¢ is known, the integral oi

et SEL IR

the equation for every other value of ¢ can be expressed through a definite in-
_tegral in which the integral of So,A = 0 is involved under the sign. Thenrwe
are able to give as many d%fferent applications of this theorem as there are
cases in which we know how to integrate the equation for a special valve of a.
In the following, two important applications of this method will be givén; one
of them, in this and in the three subsequent sections, will_acquaint‘ZS with

the theory of the generalization of the hypergeometric equation .given by Poch-

hammer*; the second deals with the generaiization which, in a different direc- .

*Crelle, Vol. LXXI, cf. Jordan, Cours d' Analyse, lst edition, Vol. III,
p. 241; Goursat, Acta Mathematica, Vol. II.
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tion, Goursat has given for the hypergeometric equation* and is treated in Sec.

40.
In the first of these applications, we assume that one of the ferms S A,

(and it can be assumed without restriction that this expression is relative to

¢ =0, i.e., A itself) is reduced to its first two terms. We then set

. n-t
A= Bn ?"n; + Bu—‘ 7

then integrating (28) by parts n - 1 times, always assuming A such that the part
at the limits is zero, we have:

; 1 [ Tnd
Y@ E TGS ) e (ma (30)

Now setting A = O, é(“'l) will be the integral ~f an equation of the first
order and its expression can be given explicitly; (30) wiil then give us the
expression of the integral of S;A = 0. Whence the following result:

"The integral of the linear differential eguation by Pochhammer S;4 = O

can be obtained in the form of a definite integral, or by expanding

B+ (B,,-.+cB..')é’4"'“’+(cB'n-.+ (Z) P) AR

G G
I ((ﬂ—-’.) Bu_‘("—i) 4 .('ll) Bi‘fu\) '7" =0,» - )

- In orler to complete this treatment, we must explicitly give the form /268

(31).

of ¢, determine the integration lines X satisfying the imposed conditionms, and,
finally, indicate how the group of the equation (31) can be obtained.

45. (a) Thus we have the equation

B,|f'+B;;-|f=0 ] fzq('i-‘) .

*Annales ae l'Ecole Normale, S. II, Vol. III.
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1.

)

and we set

B,=(l-a)(t-a)...(l—ua,),

limiting ourselves for brevity to the case in which the equation B, (2) = O has

simple roots*. We obtain, 815 355.. @, being constants which can be determined:

=

""—_:..L_.x._i*__.;. + %a .
B l—a, t—u, t -a,

™2

whence, ¢ being an arbitrary constant:

a . @
f(t) =l — (l,)J'“ - Qy) LA {{-—ay n,

so that the integral of the equation (31) is put in the form
) (t—a) ' (t—a)?...u—a)"w
\ —_ 1 * n
) = cj - (—g)smer (32)

v

o
(b) We shz211 now deiermine the integration line A, which should satisfy

the conditions stated in Sec. 42. Thus, we denote with i (=1, 2, 3... 1) a
line which, leaving any point L, of the plare of the complex variable Z,rap—

proéches point aj, goes around this point,

- remaining close to it, and then returns to the ﬁoint of departure %,, with- /269

out including any of the other points a1, as,... nor the point x and without

—passing through any ef‘;hese points, then we denote with lx'an analogous line

which, upon leaving %,, returns there after having includéd only the point x.

*The case in which the equation B = 0 has multiple roots would require a -
somewhat- more involved procedure but not different concepts. For the treaiment
of this case, v. p. e. Jordan, Cours d'Analyse, 3: from p. 241 on.
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These lines are understood travetsed in the direction which we shall call posi-

L

: tive, i.e., so that the point which they include remains to the left; we shall

‘ denote with -&;, -4, the same lines traversed in the opposite diréction. Fin-
aily, 2; + Zj will indicate the liﬁe formed by 24 and 2j successively traversed;
it should be noted here that, although the addition sign is used, the commuta-
tive law cannot be regarded as applicable.

Having thus established this, we can assume as line A satisfying the con-

ditions of Sec. 42 the line

.ll‘z = lh + l_-,: - lll - la:'

Indeed, after having traversed &, the function under the sign of (32) is mul-

L. 2rioy, 3 =27ic ;. i p—
tiplied by e - ; after having traversed iy + 2., the factor e is acquir

A —-27Tiot1,, Zﬂio
ed, atter -%p, the factor e ", finally after -f4 the factor e , S0 that

L the function regains the primitive value. The same being the case for all its

: derivatives, and the definite integral also %aving ﬁeaning and the integration
by parts and the derivation under the sign'being clearly admissible, the e~
quired conditions for line A are satisfied. We can also remove any doubt that
the integral (32), extended to line %}, is identically zero, with the exception
t of special cases;.indeed, by denoting with Iy, I the integrals extended to L

2, when the integral departs from t, with a determinate value of the function ' -

_under the sign, we readily find that

a i
[ el —a e

; lha:

We can conctruct r, (h =1, 2,... r) of such lines and no linear relation exists
among the corresponding integrals bzcause otherwise a linear dependence wouLd

result between
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opposite the arbitrariness of the roots of L, (t).
It is evident that the conditions imposed on line X can also be satisfied

with line

hx=lb+ i~k

and thus jzhk would be a new integral of the equation, which should the.efore

. Lw =(1 -], - (1 - cm:") I |
analogously

[ =" - (1 - Sy, L =A==
from which it follows identically

. 2xiz, / _ ’"‘"“m[ - L am20ic ] .
(‘ - ) IA'—(I_G "lk::+ (1 ), lhk :

Under the condition that the integrals have meaning, we can substitute in

the indicated integration lines,.the line (which might also be straight) con-

necting ap with ap, or ay with x, or ay with «, or x with «; lines which can

generally considered. )
46, We must now indicate how it is poséible to obtain the giggg of the

: equation (31). It will sufficewthereforg to ¥now the manner in which the inte-
grals extended to th; lines 2y, are transformed when the x value, considered
now as>a variable, rotates around one of the singular points. However, sinée

. the line %hx 1s formed from the simple lines &h, #x, it will suffice to show
. _

have practical advantage, but theoretically they haverno advantage over those '

be linearly related to the preceding ones. Indeed it is evident that /270



how these should be transformed so that x can rotate around ap without violat-

ing the exceptions established for the integration lines. It is clear that

t
b

this rotation

L L TN

will be possible if we substitute the %' of Figure 2.for the & of Figure 1,
then the %,' of Wigure 4 for £,. However these lines can be restored to the
primitive lines by noting that for Figure 3, , : /271

! 'I|'=’z+’h_’1'

s

and

and analogously
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then substituting:

lz'=’z+’h+,a:_lh~l‘:f

a relation which enables us to find immediately the substitution underzone by

the integrals flhx, fﬁhx when ¥ rotates around ay.

47. The following observations can be added on the integrals of equation
(31): B
(a2) Supposing that the line A does not pass through Eﬂé point ap, let us

conzider the values of x for which it is

t being-any point of the integratioﬂ Jine. For such vaiues of x, the »inomial’
(t—x)-‘ﬁn'l which appears under che  zn in (32), can be expanded inAgﬁwer
series of x - ap, and substituting ir (32) and integrating term by . a, an ex-
p;nsion is obtained for Y(x) in powe: szeries of x - ay, ;ﬁe coeffi7.rats of
which, except for some numerical factoss, sre definite integ:~'. . the same
form as (32) but with one less binomiai factor. Called the ... hypergebmetri&J
function of order r by Poc' hammer, it follows, by the same author, that:

"The coefficients of the expansion in serles of a nypevgeometric function
; ~of order r are hypergeometric functions of order r - 1"

(b) As stated in Sec. 43, a linear relation with rational coefficients /272

exists among n +.1 ‘ntegrals (32) in which the values of o differlby integers. -

The same occurs 1f any othef‘of the exponents of the binomials of (32), e.g.,
:ah, is considered instead of o. This con also be verified by direct calcula-

”‘itiog;”indeed, by considering a, as a variable, ¥ satisfies, with respect to

Swd

CI :

S



PRETT

J R T T - UL NP L EN

. g,

e ] LRI S R

e T

o] TS UG T

AN QO SN LAY SL A SRR SR At e g5 0

this, a linear differential equation of order n analogous to (31), since ap ~

enters under the sign in the same way as x; now we have

o

e

(4

= a‘hdf(a'h -1
iy,

whence

a'\l .

25 (= k(= b

anh ‘ . ) 7
by substituting in the differential equation under discussion, this is. trans-

formed into a recurrent equation, with rational coeflicients, among

Ya) L Y1) b, o

o

(c) When applying that which has been said in the preceding Séqtions to

the case of n = 2, and setting a; =0 and a, = 1, which does not constitute a

restriction, A becomes ‘ .

@B=-0"+(w+be =0

from which

C == T

equation (31) is thereby reduced to

=0y +(al+ 04 Q- Do)d + (as+o(s~1)§=0,
which is integrated by

b=cfu =1 -w)d,

where the line A is a closed line which encircles the points x and O and the
points x and 1 twice, and can be reduced, if the exponents have their reel part

greater than -t, to the line which connects o with x, o with 1, 1 with x and
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alsc one of these points with «, if the sum of the exponrents has the real part

smaller than one. It is sufficient tc set /273

<
i
IS
-2
-
)
]
»

- 1 2
>~

aN

[ -4

in order to restore the differential equation to the form of the hypergeometric
‘equation, which is integratec by

sy = 5[ V(= TN R
PR

o

R I

“

which, by setting t = 1/n, is reduced to the definite integral cited in Sec. 5.

. 48. The equation (31) which we have studied presents the first generali-
zatioq of the hypergeometric differential equation, krown under the name of
Pochhammer's generalization. Auother generalization, credited to Goursat* is
offered by a regular equation of the nth order, having only the singular points
x=0,x=1, x =, of the form I

(@™ 3 fa,_ @t rb, Y M@ Y e =0 (33)

It is easy to calculate the determinant equations relative to the three

singular poiats, and they are, respectively:

w@m’#ﬁx@sﬁm@r}w?ﬁwww AR g P INP PSP Gy e

for x = 0:
o{o— 1 omis—itr ) - Dy_g 2 3= 1)e(f =it 42)—bp a8 (o= (2 - 04 8) = - by 320,
forx=1
o= ..o-n+9{s--n+1+a,+b1=0,
‘ for x = =

N ‘ e(2-1). (e-n+1)+a,,0(0-1).. (0~ n+2)+.c4a0 40, = 0 ;.'

*Annales de 1'Ecole Normale, ioc. cit.
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thus it follows that there is one integral without singularity in the neighbor-
hood vf x = 0, n - 1 integrals without singularity in the neighborhood of x = 1,

none (except for special values of the coefficients) in the neighborhood of x

In determining the crefficients of the expaﬁsion in series of the integrals
in the neighborhood of the points 0, 1 and «, we rgadily find that:

"The ratio between a coefficient and the preceding one is a fractiomal /274
rational functicn of the index, the rank of the terms of the fraction being n,
as it is 2 for the Gauss series. Reciprccally, a power series in which the
ratio betwe;n one coefficient and the preceding one is a rational functicn of
the index satisfies one of Goursat's differential equations#®."

49. One of the most remarkable obscrvations msde on the Goursat equation
is that its integrals can be presented in the form of muitiple definite inte-
grals**. In the present .section, we propose to obtain this result on the basis
of the same observation which we used for the preceding'generalization; i.e.,
by showing how all the equations included ian the notation S;& = 0*** are inte-
grated immediately by means of the expression (29), once the regular equation
A = O has been integrated.

By applying the transformation Sy to the equation (33), an equation in ¢
is obtained, the form of which is precisely the same as the primitive equation,

which contains however the quantity o rationally in its ccefficients. Then,

by choosing ¢ so that the coefficient of the last term is annulled, then setting

*Goursat, loc. cit.
*%Pockhammer, Crelle, Vol. CII

*%*cf, Rendiconti della R. Accad. dei Lincei, May 1892,
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we aave to integrate an equation of the form

(@~ H 0L (@ Yo (, T b9 = 0. (34)

In this equation we set

0 =20,

and by dividing the resulting equation by xx, an equation of the same form as
(34) is obtained

@ =1 5,004 (@ T D@ D (0D, ") 0 =0,

; whose coefficients however contain A rationally. Now by choosing i so that by"
é% becomes equal to zero, then dividing the equation by x, we have an equation of
f é_ I the primitive form (33), but whose order is reduced by one unit. By re- ngi~—_m
:§: applying ghe same procedure to this equation, and so on, we finally arrive at
. ? an equation of the second order which is the usual hypergeometric equation and
§‘ whos? integral can be put ip the form of a definite integral, so that the in-
% tegral of (33) can be put in the form of a definite inteeral of (n-2)*P rank.
.;g CHAPTER VII.

RECURRENT EQUATIONS WITH RATTONAL COEFFICIENTS AND THEIR
VARIOUS APPLICATIONS. SPHERICAL FUNCTIONS
50. 1In this charter we propose to study the properties of the integrals
of recurrent equations of the second order, the coefficients of which are
rational functions of the index. This type of study, which is presented as an
obvious application of the re.ults of the preceding chaptevs, is of special in-

" terest Lacause we can easily aeduce from it the properties of the more well-
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known and more frequently used recurring systems such as spherical functions,
Jacob's polynomials, etc., especially with respect to the conditions for the
expansion of a given analytic function, in ordinate series of the functions of
thacs Ssyscems. We are limiting our treatment to the case of recurrent equations
ol the second order becavse the systems entering into ordinary aoplications are
of this order, however, the extension to systems of higher orders presents no
difficulties®.

Let us consider the recurrent (or difference) equation of the second order

GO faa v i +e) =0 (35)

where a(n), b(n) and c(n) are integers and rational polynomials of the same
rank m with respect to the index n; by substituting the factorials** fecr tne
powers in chese polynomials, anl designating h(h - 1) .. (h - k + 1) with (h)k’

we shall write

am=a,N+2), 4+, R+ +..-Fan+2+:0,,
b)=b,n+ i)m"!‘ b+ D+ F 5+ 1)+ b
cM=cu(My A Mpy  F..-F G0+,
where ap, ag_1,-- 3gs byse++ bgs €psee. € are constants with respect to /276

n, and apcp are assumed to be different than zero.

Together with this equation, we shall consider the following linear dif-

ferential form

A'-E_-—'(a”": I)ml'} Cwlﬁ) [":'.;"m""l'(”m—l "b.,;-‘l’i (‘,),_llz) l-'“-l.?"“")i,"..}(nu+bol.}~rol")’% ’

*See my memorandum: On the Generation of Recurrent Systems, etc. Acta
Mathematica, Vol. XVI, 1892.

**See p. e. Capelli, Algebraic Analyses, etc.,'thingournal, Vol. XXXI
(Sec. VII, 3).
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and the non-homoge..cous equation
A":::.l:"(’l-i- kt) (36)
where p is a positive integer, indeterminate for the present, and h and k are

two constants.
The equation A¢ = 0 is a regular homogeneous equation, whose singular

points are t = 0, t = ~, and the roots a, B8 of the equation of the second rank
Qp t bl 0, F=0g (37)

in regard to equation (36), its general integral is obtained by adding the gen-
eral integral of A¢ = 0 to one of its own particular integrals.

Nov;, equation (36) has a special integral, and generally only one, which
can be expanded in the neighborhood of the point t = 0 in positive whole number

power series of t. Writing this integrzl in the form
gU):}M-ipJ-fpgt+...-+pnﬂ-%..., (38)

we immediately find that the coefficients p,, Pyseer Py are zero, while for
the others, the following equaticns nold:
a{p-2)p,=h,

a(g—l)"“-i-b(ﬂ'“l)p.:k’ (39)
@ (M) Py + b Posy +eMPa=0, (=p+1,3+2,..0

The system of coefficients p, of (38) is thus an‘integral of the given recurrent
equation<(35), uniquely determined from the conditions (39), namely, by the co-
efficients h and k.

51. It is not difficult to recognize the radius of the circle cf conver-
gence of the series (38) by means of Poincaré's theorem given in Sec. 16. In

fact, this radius is the inverse of the absolute value of the limit (if it ex-
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ists) of the ratic Pnt1:Pn when n = »; now, since we hLave /277
lim M = ,41 . lm r'(ﬁ = lm ,
n=x Qi) A, nsn () a,

the limit of Pot1Ph will exist and will be, for the cited theorem, one of the

roots of the equation (the reciprocal of (37))
a, X +b,X+c,=0,

and in general it will be that root whose modulus is the greatest. Then suppos-

ing |a] < ]S], we have

. g 1
generally lim Pass . 2 , exceptionally jim Puse _

A
n=x Pn 3 @ )

n=x Pg

This is in relation with the observation that the singular points of the
integral of (36) are t = o, t = 3, and one of these points {generally a) should
lie on the circumference which limits the circle of convergence of (38).

52. Ve shali now serx>. how it follows from che principles of Chapters 11
and ITI that

(2) "If two integrals p, ard p', of the recurreat equation (36) are such
that the limit of the ratio p'y; P, is zero wher n = =, p'p will be the distinct
integrai of the s-me equation, and the continuous fraction which this equation
defines will be convergent."

(b) "If two integrals of equation (3%5) are found so that for one, p,, we

pn-&-!

l R
have lﬁn = and for the other p'y, lim Paie

3 n=® P,

1 VoL .
; the limit of p'[ :pp will

be zero and p', will be the distinct integral.”

Having established this, and by assuming that we have already found the
distirct integral p', ~sentioned in (b), the determination of the ¢ value of the
continuous fraction defined by (35)<can be conveniently performed with the method

in Sec. 15. Having set for brevity
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b(n) ()
——— =T . ——— =5,
wn) a(n)

equation (36) is written

f,,.y.' =T, fn«»l +s, fu )

this is satisfied by the numerators A, and by the denomirators By cf the reduc-

tions of the continuous fraction 278

S S ‘ OF et
—

R by = 2 @] ‘(3 s (40)
- : . a(p+1) e(n42
T T blat1) ~ =

fdr which have been set

|

A=t . _AN_’,—.:O , By=0 , B, =1

Then we have

Py= l’lp. A, + p'y.+| B,

AT AE PR A e S P TR AR e e e e

where, having assumed p'u to be differe. t than zero (if it did equal zero, it

[

‘.
Y,

would suffice to change u into u + 1, etc.), divided by Bn’ and taken the limit

for n = =, we have

s = lim —\3 ’—J—"," L
n=%x B" pl"

53. The only remaining requirement is that we find the distinct integral

p'y of (35) or, which is the same thirg, the system of coefficients of the -

w
Voo

series expamsion ,J, ¢

L !» which satisfies (36) and converges in a circle of cen-

ter £ = 0 and of radius |8]; the ratio of the second cf these coefficients to
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the first, taken with the sign changed, will give the value of the continuous
fraction defined by (35). This expansion is obtained by the method which
follows:

We describe in plane t an indefinite line A which, having left infinity,
returns there in the same direction after having made a turn around point g,

without having this line pass through the

N
el

- 3
— /)

point O nor the point & and without having this line contain either of these
points in itr3 interior (ihe region in which § liss). There is only one inte-
gral of the equation A¢ = O which, by one turn of the variable-around the point
B, is reproduced multiplied by a constant: we denote this integral by U(t) /279
and we observe that it becomes infinite of necessarily finite order when t = =

by performing the analytic continuatiocu along the line 2: let t be the real

part of this order of infinity. Finally, we determine the integer u, hitherto
indeterminate, so that it is:

T—-x+2<0.

With these positions, the definite integral

u(n dt
) — =% ———
o “)"’“[m il -z2) )

will have a meaning for each value of z external to the line X; however, a cal-
culation analogous to that performed in Sec. 42*% readily demonstrates that ¢;(z)

satisfies an equation =

— I

*For carrying on the calculation, see my cited memorandum in Acta Mathema-
tica, Vol. XVI, Sections 5-9.
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Apy=2*(h+kz) -

of the same form as (36), where

v dt
w ¥

he e[ O

Jv)tP‘.-Mg"m

U dt
=_c(1“1)[m T

where both of the definite integrals have meaning because of the hypothesis
done on u.

Now the integral ¢;(z) can be expanded in power series of z,

-V U dt )
?.(Z)—”}:;cnz# v Cu=[, et (41)

convergent for a-1 values of IEJ < [£|; however, inasmuch as the line X can be
taken to be as close to B as desired, the circle of convergence of (41) has O
for its center and |8] for its radius. The system C, is then the distinct in-
tegral of (35), which we wished to find.

It should be noted that the definite integrals which figure in the ex- /280
pressions of h and k can be represented with/Cu_z and Cy,_1; upon substituting
the values of h and k in the expressions (39), thesé assume the form of equa;
tion (35) for the vglues n=y-=-2,n0=yu-1.

Summarizing:

"Given the recurrent equation (35), the coefficients of which are integers
2nd rational polynomials of the same rank n, the system C,; given by the formula

(41) is the distinct integral of it. Then forming the continuous fraction (40),

the numerators and denominators of which satisfy (35), it is convergent and its
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values are given by the ratio *,"

—Cu+l Gy

It should be observed that in the preceding definite integrals, a lirne
which goes from B to infinity can be substituted for the integration line A,
when the function under the sign for & = R is infinite of such an order that
its real part is less than 1. Theu, the integrals f;, which do not differ ex-
cept by a constant factor, can be substituted for the integrals fk'

54. The preceding result, narely, the method of expressing the value of
each continuous fraction of the form (40) as a ratio of two definite integrals#*#
includes as a special case the well-known Gauss formula***_whiqn gives the ex~
pansion in the continuous fraction of the ratio of.two hypergeometric functionms.
In order to obtain this formula, it suffices to reduce the form A¢ tc the first
order, assuming all the ap, bh and e values from the index (subscript) h =m
to h = 2 inclusively to be zero; in this case the continuous frection (40)

takes the form D

Gkt

(@, 22)+ay) (o,(a+ D ¥ey)

(@, (1 +2)+@,) (€4 (11+2)+Cp)
by +2) + by — S 1 0
e +2) 4+ b by +3)+by— ..

by(w + 1)+ by -

the differential equation A¢ = O becomes

(m+b¢+cﬁﬂ¢+@u+bd+%ﬂ;:0. . g 3

*It remains to consider the convergence of the continuous fraccion and
the search for its value in the case in which ap = O, and in that in which
!al = ]BI: we leave this easy deterrination tc the reader.

**See Rendiconti della R. Accademia dei Lincéi, June 21, 1891.

*%*Werke, Vc1. IIL, p. 134. Cf. Helne, Handﬁook of -Spherical Functioms,
Vol. I, pp. 269 and 280.
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o the integral of which is of the form tE(t-a)”(t-B)C, and the value of the /281

continuous fraction is

” s-p-2 Lo
: : R (- oy : | -t - e,
: 'faﬁ (== rdl: | (

i which can be easily expressed (Sec. 47, ¢) by means of the quotients of two hLy-

pergeometric series.

55. 1In the preceding Sections the coefficients a(n), b(n), c(:.) of the

equation (35) were assumed tc be dependent only on the index n. We suppose now

that b(n) contains linearly a parameter x and is

()., q+2W,q= (u)q
with -

V) = b+ Da+ s @t Doyt oor v

S T ST A e

U%v:%mn+nm+mmﬂm+lmq+...+hﬁ
so that the equation which we shall consider will he

cf(n) faea + (') 0+ b” W) Frpn-F () £, = o 42)

The integrals of equation (42) will be functions of x, we shall be able to give

particular consideration to the integral B, (x) defined by the initial conditions

Bu(x) = 0, Bu+1(x) = 1, and which will be composed by a system of whole number
rational polynomials in x of rank ordinately increasing by one unit; precisely,
Bp(x) is of the rank n - u - 2.

As in Sec. 50, the linear differential form A¢ can be made to correspond

to the equation (35), and the singular points of A¢ = O are the roo.s of the

b
&

equation
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8p + (bn' T+ bu') X+ Oy Xt = 0;

let a(x) and B(x) be the roots of this equatica, and be [a(x)] < IB(x)l. Each

integral fn of the recurrent equation (42), with the exception of the distinct

integral, in such that

. f L l
lim 24 = —;
’\-l=°3 f;r a (‘7})

in particular, this will usually occur for the integral 2,(x); (in the event *

that B,(x) coincides witl: the distinct integral, another integral, e.g., the

Ap integral defined by A = 1, Ayy; = 0, would be substituted for Bp(x)). -

Equation (42) belongs to the type of equétion (5') studied in Sec. 21; /282 o e g

together with this equation, we shall consider its inverse equation, as in that

Section

am—i)f, + (V) 3+ 0" ) fup + e+ 1) £y = 0.

@ -

This also is of the form of (35): therefore, a linear difrferential form

419 will also correspond to it, and the equation 014 = 0O will_have for s{ngulaf

points, in addition to O and =, the roots of the equaticn

Cn+ bz + ba") X+ 05 X2 =0,

which are 1/0(z) and 1/8(z). The theory, established in Sec. 52 and in Subse-

quent ones, indicates how the distinct integral of equation (43)

ind!cating this integral with S,(z), we will have

lim Sut ()

m se @

and for the valve n = y - 1, equation (43) relative to Sy gives

Kl
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(@) S+ Wln - Db - 1S, =k,

where the determination of k proceeds in accordance .ith Sec. 53.

Let us now take up the development (7) given in Sec. 21, in which we change

n into n + u:

let us also take x so that [a(x)| > ¢ + ¢, and z s that {a(2)] <p - ¢, : heing
an arbitrary positive qrantity and ¢ < p an arbitrarily small positive quantity;
the expansion will be convergent absolutely and in equal rank, and then upon
repeating on it the formal calculation performed in Sec. 21, it will follow

that the sum of this expansion will be 1/(z ~ x), and thus we have

, Y-k, ix)8,6) ay

under the condition [a(x)!| > [a(2)].
56. We denote with Pp the locus cf points of the plane x for which we have

la(x)] = p. This locus will generally be a curve which will separate the /283

region E'p of the plane in which Ia(x)l < p from that Ey in which iu(x)! > e

it is clear that no passage can be made from one to the other without travers-
ing I'p. The curves T, limit the areas of Eonvergence of the series of functiomns
Bp(x) or S,(x). Two curves, T, Fpl, cannot be cut off and if p; < o, I‘p1 will
be entirely in E'j.

57. Now let f(x) be an analytic and single valued function of x, given in

the internal region of E;; we shall have by the well-known Cauchy theorem:

1
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2z being taken cutside of the region E,, i.e., in the region E-', and T',_ bein
’ - 1
taken so that it is entirzly in E.*, i.e., having 2TEE The series of (7')

g

veing convergent uniformly for tre - vaiues of T, and for x within E., its ex-

- =

pansion can be substituted for 1/z-x and thus we have the expansion of the func-

tion given }(x) in series of the functions B,(x), and convergent in the entire

E

ot
e ) biin—1) [ S, Ed
fiwy=SC,B, &), o C,=-75-——

Analogously we can have the expznsicn of an analytic function given in the re-

gion Ep', in series of the functions S,(z).

58. The preceding considerations can be readily applied to the study of
special recurrent systems with interesting results. We shall liﬁit ourselves
to-giving an example of these applicatious, demonstrating how our method treats
easily the study of spherical functions cr Legendre polynomials and of expan-

sion of analytic functions in series of such polyncmials. The special case of

spherical functions is presented when we put in equation (42)
am=n+2,bm=-@n+3),d" =0, c)y=n+1;

upon writing the special equation which is obtained with these positions, we

have
M+ 2, 204 3)& g+ (4 DF, =0
(44)

This equation does not differ from its inverse, except by the change of /284
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x into z; therefore, in (7') the system S, will be the distinct integral of

(44) itself.
We shall consider the integrai B, (x) of (44), defined by By = 0, By = 1;

upon changing n into n - 1 in (44), and setting P, (x) = B,47(x), the recurrent

equation becomes

(m+ D)1, ‘(?"-‘:”3-'1‘-::':"%["—1’—"0’ (44")

and its integral P (x) is constituted by the s . tem
s{.. 1)
P_(x)=0, Py(@)=1 ,p'{_g;)=x,P,(a‘)=§ ro3)

of polynomials of rank equal to their index. These polynomials are “nown under

the rame of Legendre polynowmials or: spherical functions of the first order.

They are the Jenominators of the reduced of the continuous fraction

1 . - or 1

defined by the recurrent equation (44').
It follows from the= general theory (Sec. 50) that if ;n is an integral of

(44'), the expansion £ t® is an integral of the linear differential equation
n g
-2+ — (@l —-)g=F “R; . (45)

taking for fn the system P, (x), it is readily evident that h = k = 0; therefore,

«©
the series I P, (x)t" satisfies the equatior
n=0

(A-2xt+®) o' —(x~-0g=0"
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which, integrated, gives

1
3 =Cql ..2xl+[3)‘2 y

however, C = 1 because Py = 1, and therefore /Z

3Py

niP“m)P:(l—2m1+lq

Thus, the property that usually defines the polynomials P, is found zzain;
they are, namely, the coefficients of the expansion of (1 - 2x& + t2)~1/2 in
power series of t.

On the basis of this defimition, it is not difficult to obtain the expan-
sion of Pn(x), from which it is evident that, with the exception cof a numerical
factor, Pp(x) is a hypergeometric series (reduced to a polynomial); and pre-
cisely, Py, coincides wita ¥(-n, n + 1/2, 1/2, x2) and Pont1 With xF(-n, n +
3/2, 3/2, xz), with the exception of a numerical multiplication factork.

59. The singular points of equation (45}, in addition to t =0 and t = =

are the roots of the equation of second rank in t.
-2z +2=0. : (463

With the exception of the real values of x included between -1 and +1, for
which the two roots of (46) both have the modulus equal tc unity, one of the
roots of this equation has a modulus greoater than unity, while the other is the

reciprocal of the first and, therefore, has its modulus less than unity. We

_shall denote the :irst with 8 = r(x), the other will be « = 1/4(x). The locus

of points of the plane x for which |r(x)| has a constant value in an ellipse

having the. points +1 and -1 as foci; as |r(x)| increases from 1 to », the elli-

*For the other elementary properties of the functions Pp, see the first
Chapter of the frequently cited Handbook by Heine.
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pse increases in size from the segment -1.. +1 to an ellipse of infinite axes.
These same ellipses are alsoc the loci in which the medulus of that root a with

modulus less than unity remains constant; precisely, the curve T, (Sec. 56) on

which we still have

P . . <]
1E2)= 3, whence |"(m)l=a » (o<
is the ellipse represented by the equation, having set x = u + iv:

u? + v* =1,
iGeo) 1G-d)

and the region E; is the internal part and the regiom E'p the external part of

the ellipse Tp.

6Q. We now turn our attentiun to determiniay the distinct integral of /286

equation (44). This is obtained by applying the general method given in the

ﬁresent Chapter. If necessary, we again take up the definite integral

[ vou
=)

considered in Sec. 53; here we shall have p = 0, U(t) = (t2 ~ 2tx + 1)—1/2, and

line A surrounds the root of equation (46) which has the larger nodulus namely

r(x). Inasmuch as U(t) is infinite of order < 1 for t = r(x), we can substitute

dt

'J=[”" —
, v ((—Q) ViE- 20+ 1

for the preceding inteéral and, expanding this integral in power series of z,

the coefficients of the successive powersrof ¢ will give the distinct integral

of (46).

We shall set
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It is worthwhile to observe that, having fi<ed {, the expansion of J converges

for all x values so that fr(x)] > ]c!, i.e., outside of one c¢f the ellipses [

if };} = 5 > 1, and in the entire plane except the segment -1.. 1, if [g| < 1.

L.

Q, (x> have beern given the name of spherical functions of the second order.

We know that for the distinct integral the recurrent equation, in our
case (44), is not valid for the initial values n =0, n =1, i.e., equation

(44') is not valid for n = -1, n = 0. Then we calculate Qo(x) and Ql(x) di-

rectly. We have

Qq () =fn' Y « ==t

riny t \’[3 - Stvm-i- |

Setting

\/lz—QI’L‘T!:u_t,

we obtain, noting that r(x) = x + Vx2 - 1,

with the same position

Q, ()= I"" dt

ria) 2T 2+

becomes

® (4~ &) dl
Q‘(w) = &[,(;) W

and dividing
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and integrating the first by parts and limiting, we obtain
Q@) =z Qo) — 1. (48)

This relation will be the one to be used instead of (44') for x = O.

Now we can apply the expansion (7') of Sec. 55 to the spherical functions

aad we have, since k = -1, b'(n) = -(2n + 3),

1 _m‘ 2), ™
— _}_; @n + 1) P, (@) Q, (2) (49)

convergent in equal rank for the x values represented by the internal points

and the z values by the external points of an ellipse of foci +l. This formula

permits of expanding in series of P,(x), a given, analytic and single-valued
function within an ellipse of this homofocal system, or in series of Q,(2%), a

given, analytic and single-valued function regularly outside of one of the above

mentioned ellipses.

61l. The value o of the definite continuous fraction from (44')
1
o= —
L
& - ——pr
3$’ 32
$ = o ——

can be easily found. The numerators of its reductions, which we shall in-

- /288

dicate with N,, form a system of whole number rational polynomials which satisfy

*A formula often credited to Neumann, but which originates with Heine

(Crelle, Vel. 42, p. 72). Cf. C. Neumapn, On the Development of a Function with
an Imaginary Argument, etc., (Halle, Schmidt, 1862) and Thome, Crelle, Vol. 66.
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(44') and, together with the denominators P,, give a fundamental system of (44')
itself. The integral N, of (44') is defined by the initial conditions N =1,
Ng = 0. By denoting two constants with respect to th index a with ¢ ana c',

we can set

Q” = C le = ¢! P“ 3

and making n = 0, we have Qg = c¢'; then making n = 1, (Nl =1, Py = x), we have :

Q=c+Q,x . .
and comparing with (48), we have ¢ = ~1. Whence it follows, since
1 14+
Q=3zlog %

the relation between the spherical functions of the first and second species:

1 1+
P Q=5 Pulog 75 = N (50)
E and since
. M1i=a, M1%=0, -
= =y Iy, n::::v:l,l
£
&
- we have
L+ 1 1+ (51) s
P E1INEY: : :
.—w w_ - .-‘ —
S 2.
T 3x—...

a formula by Gauss, and valid for every value of x except the real values bot-

ween -1 and +1.

The formula (50) determines completely the nature of the spherical functions

!
!
I}

of the second order. Since log 1 + x/1 - x is a singular, (logarithmically)

multiform and analytic function only at the points x = + 1, and that Pn and N
99




e
%
g
g
]
b
P
ko

3

LR

s

S

f;
{
y
{
"z
N

are who.e number rational functions, it follows that Q, has the same singulari-
ties and, therefore, it is a multiform analytic function; however its branches

can be separated by dividing the plane of the variable along the real axis bet-

ween the points +1 and -1. Moreover, (Sec. 17) the function Q, is zero to /289

infinity of the order n + 1.

It is quiic remarkable that while the expansion in power series of 1/x of
the function 1/2 log 1 + x/1 - x is valid only outside of the circle of center
x = 0 and oi radius 1, the expansion (51) in a continuous fraction and the ex-
pression in the form of a definite integral are valid for the entire plane,
with the exception of the segment -1 ... +1 of the reai axis.

62. The relation (50) can also be written

dt

—_ - Nn(a;)

1 1
Q@) =5 P@)]_, ¢

or

1 P (0 - Pl 1 [* P (1) dl
Q@) = — S .

- A2 N, (®);
2:’—1 t- dl+2 t— Naf)

it should now be noted that the first integral is a whole number rational func-

tion of x, because Pﬁ(t) - Pn(x) is divisible by t - x, while the second can be

cxpanded in power series of 1/x, zero for x = »; we deduce from this that we

should have separately ‘
10 P,()dt
Q@) = 5}-1 l—x
(52)
and

1 P -P, (@

However Qu(x) is zero of the order n + 1 for x = =, the same should- then
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hold for the éecond member and therefore we shall have

1
hogp = . L _q -
/;'P"a)zcu-.o pel E=0,1,2,...n 1. (53)

It results from this that

XK
-1

is zero for every whole number rational polynomial R(t) of an order less than

n, and, in particular /290

}-lpm(l) P ()dr =0 (54)

provided that m Z n. We can readily deduce from this last property that the ex-

pansion of an analytic function in series of Pp(x) can be performed in only one

manner¥,
63. P,(x), being, as stated, hypergecmetric functions in which two para-
meters vary by integers an n varies, satisfy the linear differential equations

having thé same group. These equations could be obtained from the hypergeo-

metric one but they can alsc be obtained by the following method. Having set:

R= Vi i+ 1
we readily have
2R 'R

t-atyg =0

deriving with respect to x, and noting that 3R/3x = t/K, we have

PN a-'— "
. E,,_EB_,.
'(1-wt)-ﬁ? —2:)3—55‘+t-5§—~- ;

*The properties given in this Section are the immediate consequences of
the elementary theory of continuous algebraic fractions. See the indications
given at the beginning of Sec. 21 for more information. :
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substituting for 1/R the expansion IP,(x)t" and equating the coefficient of t™

W A e e e ' v

; to zero, we have the linear differential equation of the P, (x):
: da:P dP :
(1-ay dm:"?-“’(',f“‘("‘*"”)n:o' (55)

Formula (52) immediately demonstrates (Sec. 42) that Qn(x) is a second in- :
tegral of this equation and that, together with P, it gives the fundamental
system of it. :

64. The methods of the present Chapter, which we have applied to the /291

simple case of spherical functions, can be used with equal facility in the study

of other more general polynomial systems. We cite, e.g., those which arise

4
;i
%
°
%
s
b

from the hypergeometric series in which the system of values -1, -2, -3,..., is
substituted for one of the parameters a and B; this case includes the polynom-
% ial system first considered by Jacobi* and then studied by Darboux##*, The
; T properties of these polynomials, especially the possibility of expanding a given—wﬁ"m
A
% analytic function in series of them and the relative convergence conditions
5 could be found quite readily by the methods indicated above, methods which ; ’ ;

adapt themselves to the study of recurrent systems of order greater than the

[

second, as we find, for instance, in the reduction formulas of the h;pqréllip-

i  tic integrals. i

August, 1894, .

,:Translated for the National Aernnautics and Space Administration by the

. - FRANK C. FARNHAM COMPANY .

: ~© *Crelle, Vol. 56, p. 149.

*%Journal de Mathematiques, S. III, Vol. IV, 1878,
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